首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface structures formed on room temperature adsorption of chlorine on W(100) and subsequent annealing of the saturated surface have been characterised by LEED. The progress of gas adsorption was followed by AES which was also used to observe relative chlorine coverage on annealing. Room temperature adsorption was random up to the saturation exposure of 1.7 L. On annealing the chlorine adlayer ordering commenced at about 800 K. One-dimensional ordering into rows along the <1, 1> directions was followed by the ordering of these into two 2D structures: an interpenetrating 7111 at 830 K and an interpenetrating 5161 for 860 K and above. Desorption started after 1050 K annealing and was complete by 1440 K. Saturation chlorine coverage is inferred as 5 × 1014 atoms cm?2 and the single desorption peak coupled with the LEED analysis suggests that chlorine is bridge bonded to the W(100) surface for the ordered overlayer.  相似文献   

2.
Adlayers of oxygen, carbon, and sulfur on W(211) have been characterized by LEED, AES, TPD, and CO adsorption. Oxygen initially adsorbs on the W(211) surface forming p(2 × 1)O and p(1 × 1)O structures. Atomic oxygen is the only desorption product from these surfaces. This initial adsorption selectively inhibits CO dissociation in the CO(β1) state. Increased oxidation leads to a p(1 × 1)O structure which totally inhibits CO dissociation. Volatile metal oxides desorb from the p(1 × 1)O surface at 1850 K. Oxidation of W(211) at 1200 K leads to reconstruction of the surface and formation of p(1 × n)O LEED patterns, 3 ? n ? 7. The reconstructed surface also inhibits CO dissociation and volatile metal oxides are observed to desorb at 1700 K, as well as at 1850 K. Carburization of the W(211) surface below 1000 K produced no ordered structures. Above 1000 K carburization produces a c(6 × 4)C which is suggested to result from a hexagonal tungsten carbide overlayer. CO dissociation is inhibited on the W(211)?c(6×4)C surface. Sulfur initially orders into a c(2 × 2)S structure on W(211). Increased coverage leads to a c(2×6)S structure and then a complex structure. Adsorbed sulfur reduces CO dissociation on W(211), but even at the highest sulfur coverages CO dissociation was observed. Sulfur was found to desorb as atomic S at 1850 K for sulfur coverages less than 76 monolayers. At higher sulfur coverages the dimer, S2, was observed to desorb at 1700 K in addition to atomic sulfur desorption.  相似文献   

3.
Adsorption of CO on Ni(111) surfaces was studied by means of LEED, UPS and thermal desorption spectroscopy. On an initially clean surface adsorbed CO forms a √3 × √3R30° structure at θ = 0.33 whose unit cell is continuously compressed with increasing coverage leading to a c4 × 2-structure at θ = 0.5. Beyond this coverage a more weakly bound phase characterized by a √72 × √72R19° LEED pattern is formed which is interpreted with a hexagonal close-packed arrangement (θ = 0.57) where all CO molecules are either in “bridge” or in single-site positions with a mutual distance of 3.3 Å. If CO is adsorbed on a surface precovered by oxygen (exhibiting an O 2 × 2 structure) a partially disordered coadsorbate 2 × 2 structure with θo = θco = 0.25 is formed where the CO adsorption energy is lowered by about 4 kcal/mole due to repulsive interactions. In this case the photoemission spectrum exhibits not a simple superposition of the features arising from the single-component adsorbates (i.e. maxima at 5.5 eV below the Fermi level with Oad, and at 7.8 (5σ + 1π) and 10.6 eV (4σ) with COad, respectively), but the peak derived from the CO 4σ level is shifted by about 0.3 eV towards higher ionization energies.  相似文献   

4.
Oxygen adsorbed on Pt(111) has been studied by means of temperature programmed thermal desorption spectroscopy (TPDS). high resolution electron energy loss spectroscopy (EELS) and LEED. At about 100 K oxygen is found to be adsorbed in a molecular form with the axis of the molecule parallel to the surface as a peroxo-like species, that is, the OO bond order is about 1. At saturation coverage (θmol= 0.44) a (32×32)R15° diffraction pattern is observed. The sticking probability S at 100 K as a function of coverage passes through a maximum at θ = 0.11 with S = 0.68. The shape of the coverage dependence is characteristic for adsorption in islands. Two coexisting types of adsorbed oxygen molecules with different OO stretching vibrations are distinguished. At higher coverages units with v-OO = 875 cm?1 are dominant. With decreasing oxygen coverages the concentration of a type with v-OO = 700 cm?1 is increased. The dissociation energy of the OO bond in the speices with v-OO = 875 cm?1 is estimated from the frequency shift of the first overtone to be ~ 0.5 eV. When the sample is annealed oxygen partially desorbs at ~ 160K, partially dissociates and orders into a p(2×2) overlayer. Below saturation coverage of molecular oxygen, dissociation takes place already at92 K. Atomically adsorbed oxygen occupies threefold hollow sites, with a fundamental stretching frequency of 480 cm?1. In the non-fundamental spectrum of atomic oxygen the overtone of the E-type vibration is observed, which is “dipole forbidden” as a fundamental in EELS.  相似文献   

5.
We have studied high-resolution angle-resolved and photon-polarization dependent photoemission from chlorine adsorbed on Cu(OOl) and Cu(111). Chlorine forms a c(2 × 2) saturation overlayer on Cu(OO1) and adsorbs dissociatively as revealed by LEED and XPS. Several two-dimensional energy bands on Cu(001)c(2 × 2)-Cl could be iden along the \?gG M? and \?gG M? lines of the surface Brillouin zone, their respective mirror symmetry and their orbital character could be determined. An interpretation of these bands is given in terms of the interaction of the ordered overlayers with particular substrate bulk bands. Besides the appearance of adsorbate-induced two-dimensional bands drastic changes are resolved in the substrate d-band emission region. These can be explained almost exclusively by surface umklapp processes involving reciprocal lattice vectors of the ordered adsorbate mesh. Supplementary studies of the Cu(111) (√3 × √3)R30°-Cl system support our ideas. We discuss some important implications of our results for the interpretation of angle-resolved photoenussion spectra from ordered adsorbate layers.  相似文献   

6.
The initial sticking probability of chlorine on Fe(100) at room temperature is calculated to be 0.13, and there is evidence to suggest that the chlorine adsorbs into a short lived mobile precursor state above the surface. The work function change, Δφ, is proportional to coverage and reaches a maximum value of 1.43 eV at saturation. At this coverage a c(2 × 4) LEED pattern is formed. On heating, chlorine is lost from the surface, but the mechanism is such that no detectable loss is incurred at a constant elevated temperature. The c(2 × 4) pattern is shown to be a coincidence structure formed from a (123?123) net of chlorine atoms on the Fe(100) substrate. This structure is a special case of the more general (12tanα?12tanα) structure formed at lower concentrations of chlorine. The c(2 × 4) is formed when α = 56.31°, which gives the chlorine atoms a hard sphere diameter of 0.345 nm and a concentration of 0.75 atoms per four-fold site.  相似文献   

7.
H. Papp 《Surface science》1983,129(1):205-218
The chemisorption of CO on Co(0001) has been investigated by LEED, UPS, EELS, Auger and sp measurements. CO is molecularly adsorbed on Co(0001) in the investigated temperature range from 100 to 450 K. This is deduced from the UPS and EELS results and the reversibility of the sp and LEED data. The isosteric heat of adsorption has a constant value of 128 kJ/mol up to a coverage of 13 and drops then to about 96 kJ/mol. This coincides with the completion of a (√3 × √3)R30° overlayer structure and the formation of a (2√3 × 2√3)R30° CO overlayer which is fully developed at 100 K.  相似文献   

8.
Angle-resolved photoemission spectroscopy utilizing synchrotron radiation has been used to study the band structure of the c(2×2) and (3×1) oxygen overlayers on Fe(110). The symmetries of the O-2p-derived states at the center of the surface Brillouin zone (Γ) were identified using polarized light. At Γ the pxpy- and pz-derived levels are at about 5.5 and 7.0 eV below the Fermi level, respectively, for both ordered overlayers. The p-states of the c(2×2)-O structure show very little dispersion (?0.1 eV) with k. On the other hand, the c(3×1)-O overlayer exhibits considerable dispersion of ~1.6 eV. The essential features of the measured dispersion are reproduced well by the dispersion predicted in a qualitative way for an isolated c(3×1) oxygen monolayer.  相似文献   

9.
The hydrogen-induced reconstruction on a high step density W(001) crystal, (2×2)R45°-H, with steps oriented parallel to the [110] and ~ 28 Å average terrace width has been investigated using LEED symmetry, beam shape analyses, and EELS. The symmetry of the LEED pattern is observed to change from p2mg for the (2×2)R45° clean surface reconstruction to c2mm for the commensurate phase (2×2)R45°-H reconstruction. Correspondingly, the shapes of the half-order beams indicate that the hydrogen-induced reconstruction domains are much less elongated than the clean surface domains. A splitting of each half-order beam into four beams at higher exposures indicates the existence of two domains of the incommensurate phase. A commensurate phase v1 vibrational loss peak centered at 160 meV in the EELS spectrum broadens on the low-energy side during the incommensurate phase and then shifts toward 130 meV and narrows as the (1×1)-H saturation structure develops. These observations imply that there is no long-range inhibition ( ~ 20 Å) to the formation of either commensurate or incommensurate phase; hydrogen induces a switching of the atomic displacements from 〈110〉 directions on a clean surface to 〈100〉 directions, even with steps oriented parallel to the [110]; and in the incommensurate phase there is a distribution of hydrogen site geometries with the most probable geometry more like the commensurate phase geometry than the saturation phase geometry.  相似文献   

10.
The condensation of gold onto clean and contaminated, single crystal, tantalum (100) surfaces has been followed by using LEED and AES. On a contaminated surface gold condenses as crystallites in a (211) surface orientation with some degree of preferred, azimuthal orientation. On a clean surface gold condenses in an ordered overlayer. Up to approximately 34 monolayer the structure conforms to the (1 × 1) tantalum surface. Beyond this, the observed LEED structure may be interpreted initially in terms of a TaAu overlayer made up of 90° rotated domains with (001)TaAu//(100)Ta and 〈 10 〉 TaAu// 〈 11 〉 Ta, and then in terms of a gold overlayer in a “distorted (111)” orientation. Annealing of these gold films always results in the formation of a (1 × 1) TaAu overlayer of small crystallite size.  相似文献   

11.
The adsorption of acetylene on W(100) at room temperature has been studied by AES, ELS, thermal desorption, mass spectrometry, work function and LEED in one vacuum chamber. AES line profile analysis shows that there are at least two adsorption processes occurring at room temperature. Further, it is possible to explain all the AES results by assuming non-sequential adsorption into just two states, denoted by α and β. This picture was substantiated and embellished by comparison with other standard surface techniques. The α-state comprises either a C2H2 unit with an activation energy for desorption of 2.3 eVmolecule (53 kcal mole?1) or CH units bounded through the carbon of the β-state. Saturation coverage for the α-state is 3 × 1014 molecules cm?2. The β-state is dissociative at low acetylene exposures and comparison between a carbon covered surface and the β-state suggest the latter to be dissociative up to saturation. There also appears to be ca. 1014 hydrogen atoms cm?2 on W(100) on room temperature acetylene saturation, the carbon content of the β-state being 9 × 1014 atoms cm?2. The residual C?C bond from the molecule in the β-state remains unknown. No sign of ordering in the adsorbed species was detected, save the possibility of (1 × 1) in the β-state. Acetylene adsorption at 580 K showed hydrogen from the β-state to block acetylene adsorption by 15% at saturation. A two-site adsorption model for the β-state is proposed to explain the results. The α-state is bonded through the carbon of the β-state and it is speculated that the former adsorbs onto “β” domains where there is a critical minimum size for the latter.  相似文献   

12.
The c(2×2) Se overlayer on Ni(001) was studied by angular resolved UPS using unpolarised and polarised HeI (21.2 eV) radiation. The polariser was designed in such a way that s-, p- and unpolarised light could be used without breaking vacuum. A good correlation between the photoelectron spectra and the surface Brillouin zone of the c(2×2) Se overlayer was found. The pz- and the degenerate px-, py-derived Se levels are well separated at the M? point lying at 3.8 eV(pz and 5.2 eV (px, py), respectively. The bands show dispersion and cross between M and Г so that at Г the px-, py -derived levels lie closer to the Fermi edge.  相似文献   

13.
A detailed LEED study is reported of the surface phases stabilised by hydrogen chemisorption on W {001}, over the temperature range 170 to 400 K, correlated with absolute determinations of surface coverages and sticking probabilities. The saturation coverage at 300 K is 19(± 3) × 1014 atoms cm?2, corresponding to a surface stoichiometry of WH2, and the initial sticking probability for both H2 and D2 is 0.60 ± 0.03, independent of substrate temperature down to 170 K. Over the range 170 to 300 K six coverage-dependent temperature-independent phases are identified, and the transition coverages determined. As with the clean surface (2 × 2)R45° displacive phase, the c(2 × 2)-H phase is inhibited by the presence of steps and impurities over large distances (~20 Å), again strongly indicative of CDW-PLD mechanisms for the formation of the H-stabilised phases. These phases are significantly more temperature stable than the clean (2 × 2)R45°, the most stable being a c(2 × 2)-H split half-order phase which is formed at domain stoichiometries between WH0.3 and WH0.5. LEED symmetry analysis, the dependence of half-order intensity and half-width on coverage, and I-V spectra indicate that the c(2 × 2)-H phase is a different displacive structure from that determined by Debe and King for the clean (2 × 2)R45°. LEED I-V spectra are consistent with an expansion of the surface-bulk interlayer spacing from 1.48 to 1.51 Å as the hydrogen coverage increases to ~4 × 1014 atoms cm?2. The transition from the split half-order to a streaked half-order phase is found to be correlated with changes in a range of other physical properties previously reported for this system. As the surface stoichiometry increases from WH to WH2 a gradual transition occurs between a phase devoid of long-range order to well-ordered (1 × 1)-H. Displacive structures are proposed for the various phases formed, based on the hypothesis that at any coverage the most stable phase is determined by the gain in stability produced by a combination of chemical bonding to form a local surface complex and electron-phonon coupling to produce a periodic lattice distortion. The sequence of commensurate, incommensurate and disordered structures are consistent with the wealth of data now available for this system. Finally, a simple structural model is suggested for the peak-splitting observed in desorption spectra.  相似文献   

14.
HBr and HCl react with Pt(111) and Pt(100) surfaces to form adsorbed layers consisting of specific mixtures of halogen atoms and hydrogen halide molecules. Exposure of Pt(111) to HBr yielded a (3×3) LEED pattern beginning at ΘBr = 29 and persisting at the maximum coverage which consisted of ΘBr = 13 plus ΘHBr = 19. The most probable structure at maximum coverage, Pt(111)[c(3 × 3)]-(3 Br + HBr), nas a rhombic unit cell encompassing nine surface Pt atoms, and containing three Br atoms and one HBr molecule. On Pt(100) the structure at maximum coverage appears to be Pt(100)[c(2√2 × √2)]R45°-(Br + HBr), ΘBr = ΘHBr = 14; the rectangular unit cell involves four Pt atoms, one Br atom and one HBr molecule. Each of these structures consists of an hexagonal array of adsorbed atoms or molecules, excepting slight distortion for best fit with the substrate in the case of Pt(100). Treatment of Pt(100) with HCl produced a diffuse Pt(100)(2 × 2)-(Cl + HCl) structure at the maximum coverage of ΘCl = 0.13, ΘHCl = 0.11. Exposure of Pt(111) to HCl produced a disordered overlayer. Thermal desorption, Auger spectroscopy and mass spectroscopy provided coverage data. Thermal desorption data reveal prominent rate maxima associated with the structural transitions observed by LEED. Br and HBr, Cl and HCl were the predominant thermal desorption products.  相似文献   

15.
The formation of ordered phases of sulfur on the molybdenum (100) crystal face has been studied by Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES) and Thermal Desorption Spectroscopies (TDS). Sulfur was deposited from a S2 molecular flux streaming out of an Ag2S containing electrochemical cell inside the UHV chamber. The use of a controlled flux of S2 allowed the careful determination of saturation values for the monolayer, as well as the formation of multilayers of sulfur. This allowed the calibration of Auger intensities in terms of sulfur coverage. Various ordered structures, c(2 × 2), (1 × 2), 21?11 and c(2 × 4), were observed by LEED for different values of the S coverage. Real space models for these structures are proposed that satisfy the coverage values observed and place sulfur atoms only on high symmetry four-fold sites on the (100) molybdenum surface.  相似文献   

16.
Clean Pt(100) surfaces with bulk-like 1×1 structure, or the stable, reconstructed 5×20 structure and held at 200 or 330 K were exposed to ethylene. Ultraviolet photoemission spectroscopy identified the nature of the adsorbed species which depends on the structure and temperature of the clean surface and the amount adsorbed. It is ethylene on the 5 × 20 structure at 200 K, a vinyl radical on the same surface at 300 K up to half a monolayer, the remainder being added as acetylene; it is acetylene on the 1 × 1 surface at 330 K and a mixture of acetylene, vinyl and ethylene on the 1 × 1 surface at 200 K. Whatever the nature of the adsorbate, the surface coverage θ increased with exposure ? as (1 ? θ = C??13). By contrast, on a surface covered with any C2 hydrocarbon acetylene adsorbs with Langmuir kinetics. The kinetics are explained in terms of the relationship between the attraction an approaching molecule experiences from the bare surface and its Van der Waals repulsion from preadsorbed molecules.  相似文献   

17.
The ionic and electronic conductivities of the lithium nitride bromides Li6NBr3 and Li1 3N4Br have been studied in the temperature range from 50 to 220°C and 120 to 450°C, respectively. Both compounds are practically pure lithium ion conductors with negligible electronic contribution. Li6NBr3 has an ionic conductivity Ω of 2 × 10-6Ω-1cm-1 at 100°C and an activation enthalpy for σT of 0.46 eV. Li1 3N4Br shows a phase transition at about 230°C. The activation enthalpy for σT is 0.73 eV below and 0.47 eV above this temperature. The conductivities at 150 and 300°C were found to be 3.5 × 10-6 Ω-1cm-1 and 1.4 × 10-3Ω-1cm-1, respectively. The crystal structure is hexagonal at room temperature with a = 7.415 (1)A? and c = 3.865 (1)A?.  相似文献   

18.
Electron spin polarization and intensity profiles have been measured in low electron diffraction (LEED) for the (00) beam at θ = 13° and ø = 0° from a W(001) surface exposed to CO and annealed to obtain an ordered c(2 × 2) CO overlayer. The annealed surface with additional CO adsorbed was also studied. The polarization was found to be sensitive to the surface condition and the very distinct P?V profile corresponding to the c(2 × 2) overlayer is believed to be a very sensitive indicator of CO in the β3 phase. The properties of the annealed surface exposed to further CO suggest the use of this surface as a low energy electron spin polarization analyzer.  相似文献   

19.
The decomposition of D2CO, CH3OD and HCOOH on Pt(110) and of D2CO on Pt(S)-[9(111) × (100)] was studied by molecular beam relaxation spectroscopy. D2CO and CH3OD evolved CO and H2 via a desorption limited sequence of elementary steps. The rate constant for CO desorption from Pt(110) was 6 × 1014exp(? 35.5 kcalgmol · RT) s?1, and from Pt(S)-[9(111) × (100)] it was 1 × 1015 exp(?36.2 kcalgmol·RT) s?1. On Pt(110) the rate constant for hydrogen formation was 100 ± 1exp(?24 kcalgmol·RT) m?2atom · s. On Pt(S)-[9(111) × (100)] two pathways for H2 formation existed with rate constants of 8.7 × 10?2exp( ?24.9 kcalgmol· RT) cm2atom· s and 3.2 × 10?3 exp(?19.5 kcalgmol·RT) cm2atom· s. These pre-exponential factors are in order of magnitude agreement with values typical of hydrogen recombination on other metals. When a small amount of sulfur ( ~ 0.1 ML) was adsorbed on the stepped Pt surface, only one pathway for H2 formation existed due to blockage of stepped sites. A similar result was obtained when a beam of CO was impinged on the surface. Formic acid decomposed via a branched process to form primarily CO2 and H2.  相似文献   

20.
The polar GaAs(1&#x0304;1&#x0304;1&#x0304;)As surface can be prepared in three stable and ordered states: two by molecular beam epitaxy (MBE), namely the As-stabilized and the Ga-stabilized states and one simply by ion bombardment and annealing at 770 K. The respective LEED structures are (2 × 2), (19 × 19)R23.4°, and (1 × 1) with a diffuse faint (3 × 3) superstructure. Auger measurements and the comparison with the stoichiometric cleaved (110) surface show that there are different As concentrations in the first atomic layer associated with each of these three surfaces. Whereas about 10 to 15% of the first As layer appears to be missing on the (2 × 2) surface, about 50% is missing on the 19 surface. On the (1 × 1) surface the first As layer is removed completely. The intensity of emission from the surface sensitive states between 1 and 4 eV below the valence band edge, as seen by angular resolved UPS, roughly corresponds to the amount of As at the surface thus confirming their interpretation as As-derived surface states. The inital sticking coefficent for oxygen depends strongly on the surface structure: ~10?8 for the (2 × 2), ~10?7 for the 19, and ~10?4 for the (1 × 1) surface. The sticking coefficient does not depend on the surface concentration of As but rather on the degree of saturation of dangling bonds on Ga atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号