首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Rare Earth Doping Effects on Properties of Ceria-Zirconia Solid Solution   总被引:1,自引:0,他引:1  
Ce0.6Zr0.3RE0.1O2(RE=Y, La, Pr, Tb)solid solutions were prepared by co-precipitation technique and characterized by a series of methods. XRD and FT-Raman results show that Ce0.6Zr0.3RE0.1O2 has cubic fluorite structure. The different dopant ion radii bring different effect on the cell parameter of Ce0.6Zr0.3RE0.1O2. The X-ray photoelectron spectroscopy (XPS) results show that the binding energy of Ce3d, Zr3d and O1s for Ce0.6Zr0.3RE0.1O2 rises compared with that for Ce0.6Zr0.4O2, indicating that dopant elements change chemistry environment of solid solutions which is available to improve redox performance. Compared with Pd/Ce0.6Zr0.4O2, doping Y and La does not change air/fuel (A/F) characteristic of TWCs, but doping Pr and Tb widens A/F operating window and makes HC, CO and NO have higher conversion. The light-off temperature of Pd/Ce0.6Zr0.3La0.1O2 is corresponding to that of Pd/Ce0.6Zr0.4O2. However, the light-off temperatures of Pd/Ce0.6Zr0.3M0.1O2 (M=Y, Pr, Tb) are lower than that of Pd/Ce0.6Zr0.4O2, which keep much lower after high temperature treatments. Among Pd/Ce0.6Zr0.3RE0.1O2, Pd/Ce0.6Zr0.3Tb0.1O2 represents wider A/F operating window, higher conversion, lower light-off temperature and better high-temperature resistance.  相似文献   

2.
铈锆钇氧化物固溶体的水热法制备及性能表征   总被引:1,自引:1,他引:0  
采用水热法制备了Ce0.6Zr0.3Y0.1O1.95固溶体。采用XRD、分子荧光光度仪及透射电镜对其进行了表征,结果表明,Ce0.6Zr0.3Y0.1O1.95具有立方萤石结构,形成了单相的纳米级复合氧化物固溶体。将其作为固体酸催化剂应用于乙酸、正丁醇的酯化反应,考察了酸醇比、反应时间和催化剂重复使用等因素对乙酸转化率的影响,确定最优反应条件是:酸醇比1∶1,反应时间2.5 h,乙酸转化率为43.20%。作为一种固体酸,它具有较高的酸催化活性。催化剂易与反应液分离。反复使用几次后,其催化活性基本保持不变。  相似文献   

3.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

4.
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5–xZr0.5–xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Cata-lytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy /Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.  相似文献   

5.
采用感应熔炼法制备La_(0.53)Ce_(0.47)Ni_(3.4)Co_(0.6)Mn_(0.3)Cu_(0.1)储氢合金,并在不同温度下进行热处理,通过XRD对其相组成及结构进行表征,并采用双电极模拟电池测试系统对其储氢性能进行测试与分析。结果表明,随着退火温度的升高,合金的相组成未发生变化,但其晶化程度逐渐增高,晶体缺陷和晶格应力逐渐减少。热处理改善了合金的循环稳定性,提高了合金的电化学容量,但恶化了高倍率放电能力。  相似文献   

6.
钇掺杂对Ce0.33Zr0.67O2储氧性能的影响   总被引:1,自引:0,他引:1  
贺娟  冉锐  樊俊  翁端 《稀土》2012,33(3):6-11
采用柠檬酸溶胶凝胶法制备了一系列钇掺杂的富锆铈锆复合氧化物Ce0.33YxZr0.67-xO2,并通过XRD,BET,OSC,XPS,in-situ CO-FTIR等测试,系统研究了钇掺杂后铈锆复合氧化物储放氧性能的变化规律及其影响因素。结果表明,钇离子能够进入铈锆晶格形成固溶体,并提高铈锆体系的结构热稳定性。对于新鲜样,钇掺杂可大幅提升Ce0.33Zr0.67O2材料的比表面积,提高单位质量铈锆材料的储氧能力;但老化后,钇掺杂样品的储氧性能随着掺杂量的增加而减小。通过XPS及原位红外吸附性能测试证实,钇在Ce0.33Zr0.67O2材料表面主要取代锆离子,其掺杂会降低样品的表面吸附能力,抑制铈的氧化还原反应,从而导致该体系储氧性能的下降。  相似文献   

7.
Thesolidelectrolyteisakeycomponentofsolidoxidefuelcell (SOFC) .Dopedceriaisoneofpromis inghigh conductingsolidelectrolyteinSOFC[1,2 ] .Butitiswell knownthatitisdifficulttosinterdopedceriabysolidstatereactioninair .TheCe0 .9RE0 .1O2 -δelectrolytematerialswerepreparedbythesol gelmethod .Thesinteringtemperatureofthesamplescandecreasetoabout 4 0 0K .Theionicconductivityandlinearthermalexpansionpropertiesofsol gelpreparedCe0 .9RE0 .1O2 -δinawidetemperaturerangewerein vestigated .Thepowder…  相似文献   

8.
The three-way catalysts (TWCs) promoters Ce0.6Zr0.4- x TbxO2-y were prepared by sol-gel method. BET surface areas analysis indicated that an increase of the dopant Tb content from x = 0.05 to x = 0.15 favors an increase of surface area from 66.8 to 80.4 m^2· g^-1 compared with the undoped sample Ce0 .6oZr0.40O2 65.1 m^2·g^- 1 after calcination at 650℃. Transmission electron microscopy (TEM) observation indicated that the doped samples have a higher thermal stability. The XRD and Raman spectra confirmed that the Ce0.6Zr0.4-xTbxO2-y cubic solid solution is formed. XPS analysis revealed that Ce and Tb mainly existed in the form of Ce^4+ and Tb^3 + , and Zr existed in the form of Zr^4+ on the surface of the samples. The doped samples were homogenous in composition ; the introduction of Tb into the CeO2-ZrO2 promoters resuited in the formation of a solid solution, and the concentration of surface lattice oxygen was increased.  相似文献   

9.
In this study,Kx-Mn-Ce catalysts prepared by sol-gel method were investigated for toluene oxidation.Compared with Mn-Ce,the catalytic performance of Kx-Mn-Ce was further improved.X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM) and Raman analyses demonstrate that K ions enter the lattice of CeO2 and disperse uniformly.The results of X-ray photoelectron spectroscopy(XPS),H2-temperature programmed reduction(H2-TPR...  相似文献   

10.
Sm and Ho were doped in Ce-Mn/TiO2 catalyst respectively to enhance its denitration performance at low temperature.X-ray diffraction(XRD),N2 adsorption-desorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature programmed desorption(NH3-TPD),H2-temperature programmed reduction(H2-TPR) and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) techniques were used to analyze the structure and performance ...  相似文献   

11.
The effect of Co doping on ceria-zirconia mixed oxides was investigated for Co 0.1 Ce 0.6 Zr 0.3 O x sample prepared by sol-gel method. The Pd-only three-way catalyst (TWC) was obtained by incipient wetness impregnation with 0.5 wt.% Pd loading. The structural and oxygen handling properties were analyzed by X-ray diffraction (XRD), H 2 -temperature programmed reduction (H 2 -TPR) and the dynamic oxygen storage capacity (DOSC). The introduction of Co into ceria-zirconia lattice strongly modified the mobility of oxygen and enhanced the DOSC performance. Pd-only TWC based on the Co 0.1 Ce 0.6 Zr 0.3 O x support exhibited superior activity for water-gas shift and steam reforming and amplified amplitude of stoichiometric window.  相似文献   

12.
A series of solid solution material based on ceria, Ceo.9Cao.l-xSrsOi.90(x = 0, 0.04, 0.05, 0.06), were synthesized by a solid reaction method. Ceria doped with two alkali earth dements has cubic fluorite structure. The ionic conductivity of these materials at high temperature was studied by impedance spectra, and an increasing effect of ionic conductivity was found. A maximum conductivity is achievedwhen the effective ionic radius is near to the critical radius (0. 1106 nm). Some fuel cells were made using these materials as electrolyte. The output power and current of the SOFC with the electrolyte of double doped ceria are better than those of YSZ and single doped ceria, and the open-circuit-voltage of the double doped ceria is also higher than that of the single doped ones.  相似文献   

13.
The ultrafine Ce-based oxide nanoparticles with different element dopings (Zr, Y) were synthesized by the method of mi- cropores-diffused coprecipitation (MDC) using ammonia solution as the precipitation agent. The activities of the catalysts for soot oxidation were evaluated by the temperature-programmed oxidation (TPO) reaction. Ce-based oxides prepared in this study exhibited high catalytic activity for soot oxidation under tile condition of loose contact between soot particles and catalysts, and the catalytic ac- tivity ofultrafine Ce0.gZr0 iO2 nanoparticle for soot combustion was the highest, whose/"10, Ts0 and Sco2m was 364, 442 ~C and 98.3%, respectively. All catalysts were systematically characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brumauer-Emett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). It was indicated that the MDC method could prepare the ultrafine Ce-bascd oxide nanoparticles whose the crystal lattice were perfect, and the BET surface area and average crystal size of the ultrafine nanoparticles changed with the different element dopings (Zr, Y). The H2-TPR measurements showed that the ultrafine Ce-based ox- ide nanoparticles with the doping-Zr cation could be favorable for improving the redox property of the catalysts.  相似文献   

14.
Magnetocaloric effect and magnetic properties of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 and its hydride La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 were investigated. The Curie temperature of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was increased by hydrogen absorption. XRD patterns showed that the structure of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 remained NaZn13-type. The Curie temperature (TC) of the sample was increased from 174 K to 331 K. The homogeneity of the hydrogen absorption for La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 was proven very well by the random measurement of DSC. The magnetic entropy △SM of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 had peak at 326 K. The peak value of-△SM-was 12.3 and 7.8 J/(kg.K) under magnetic field change of 0-2 T and 0-1 T,respectively,which was comparable with Gd5Si2Ge2. The negative slope and inflection point of the Arrott curve indicated that the first-order magnetic transition of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was reserved after hydrogen absorption.  相似文献   

15.
The development of the TWCs (three-way cata-lysts) was dictated bythe need to si multaneously con-vert the three main pollutants inthe exhaust gases ,i .e .,hydrocarbons (HCs) ,COand NOxpresent in theautomotive exhaust to H2O, CO2and N2[1]. Highestconvers…  相似文献   

16.
Mesostructured Ce0.6Zr0.4O2 solid solutions were synthesized by coprecipitation combined with evaporation-induced self-assembly process. The obtained materials were characterized by X-ray diffractometer (XRD), Raman, transmission electron microscopy (TEM), N2 sorption, and hydrogen temperature programmed reduction (H2-TPR). The results showed that the solid solutions consisted of uniform nanocrystals, which piled homogeneous mesopores of about 4 nm. Furthermore, different surfactants had little influence on the mesoporous structures. All these samples exhibited high thermal stability.  相似文献   

17.
A series of MnMgAlO samples with different amounts of Ce doping were facilely prepared using coprecipitation method and their catalytic soot combustion activity was evaluated by temperature programmed oxidation reaction(TPO).The methods of X-ray diffraction(XRD),Brumauer-Emmett-Teller(BET),H2-TPR,NO-TPO and in situ IR were used to characterize the physiochemical properties of these samples.Dopant Ce improved the soot combustion performance of MnMgAlO catalyst due to the enhanced redox ability.Introduction of NOx led to the further increase of catalytic soot oxidation activity on these samples.Over Ce-containing samples,the catalytic activity was slightly decreased as the amount of dopant Ce increased in O2.Differently,in NO+O2,a certain amount of dopant Ce was much more favorable and excess amount of Ce resulted in a sharp drop of the catalytic soot combustion activity.Both NO2 and nitrates were found to have great contributions to the effects of NOx on the soot combustion activity of Ce-doped catalysts.More NO2 was generated as dopant Ce increased.When appropriate amount of Ce was introduced,the as-formed NO2 was stored as bridging bidentate nitrate on Mn-Ce site,which was confirmed to have higher reactivity with soot than nitrite or monodentate nitrate on Mn and/or Ce sites.Overall,Mn0.5Mg2.5Ce0.1Al0.9O was considered as the most potential catalyst for soot combustion.  相似文献   

18.
The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr^4+ had replaced part of Ce^4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main HE consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 ℃, which was 200 ℃ lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x meanwhile, after oxygenation, the Ce0.7Zr0.3O2.x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.  相似文献   

19.
A series of CexZr0.50-xAl0.50O1.75(0.05≤x≤0.45) mixed oxides with different Ce/Zr ratio were prepared by co-precipitation method and characterized by means of X-ray diffraction(XRD),Brunauer-Emmet Teller method(BET),temperature-programmed reduction(H2-TPR) and oxygen pulsing technique.The XRD results showed that all samples kept the single CeO2 cubic fluorite structure after calcination at 600 and 1000 oC for 5 h.The results of BET revealed that CexZr0.50-xAl0.50O1.75 with Ce/Zr molar ratio 1/1 exhibited higher specific surface area(212 m2/g) and larger pore volume(0.40 ml/g).For all aged samples,CZA with Ce/Zr molar ratio 3/7 presented the highest specific surface area(104 m2/g) and pore volume(0.34 ml/g).The compounds could still keep prominent structural and textural stability with excellent redox properties even calcined at 1000 oC.  相似文献   

20.
(Y0.95La0.05)2O3: Ce3+ nano-powder was synthesized by co-precipitation method and sintered at 800 and 900 oC. All the samples were cubic phase characterized by X-ray diffraction (XRD) analysis. The samples sintered at the lower temperature exhibited luminescence. According to the distinguishable structure of Ce 3d peaks and the shift of O 1s lines in the X-ray photoelectron spectroscopy (XPS), luminescence was further confirmed to originate from Ce3+ ions. Effects of introducing La3+ into Y2O3 were discusse...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号