首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper provides a brief review of the role that chorus waves play in controlling the dynamics of the Earth's outer radiation belt. Three major topics are discussed: (i) the morphology, characteristics, and properties of chorus waves themselves, with special emphasis on more recent results, (ii) the role that chorus waves play in the loss of radiation belt particles, showing initial results from modeling of relativistic electron microbursts, and estimated lifetimes based on microburst occurrence rates during the main phase of storms, and (iii) the role that chorus waves play in the acceleration of electrons to relativistic energies in the recovery phase of storms, based on a new quasilinear diffusion based calculation.  相似文献   

2.
A unified method for calculating the Dst index and its components using models of the magnetospheric magnetic field is proposed. The method is consistent with the procedure for calculating Dst from the ground-based magnetometer data. When calculating Dst, the quiet-day magnetic variation is subtracted from the model variation of the magnetic field of magnetospheric sources. The effect of induced currents flowing in the surface layer of the Earth’s crust is taken into account. The dynamics of the magnetospheric current systems during a storm is studied based on an analysis of the Dst components. The magnetic field components for a “quiet” day in June 1998 are studied. The calculations of the Dst components in the parabolid and T01 models demonstrate that the maximum contributions of the ring current and magnetotail current system to the Dst variation are comparable for the magnetic storm of June 25–26, 1998.  相似文献   

3.
The dynamics of the auroral precipitation boundaries in the daytime (0900–1200 MLT) and nighttime (2100–2400 MLT) sectors during two strong magnetic storms of February 8–9, 1986, and March 13–14, 1989, with a Dst value at a maximum of approximately ?300 and ?600 nT, respectively, are studied using the DMSP satellite data. It is shown that, during the main phase of a storm, a shift to lower latitudes of the poleward and equator ward boundaries of the daytime precipitation is observed. In the nighttime sector, the equatorward boundary of the precipitation also shifts to lower latitudes, whereas the position of the poleward boundary depends weakly on the magnetic activity level even in the periods of very strong magnetic disturbances. The increase in the polar cap area occurs mainly due to the equatorward shift of the daytime precipitation. A high correlation degree between the equatorward shift of the poleward boundary of the daytime precipitation and the position of the equatorward boundary of the precipitation at the nighttime side of the Earth is demonstrated. The analysis of the events shows that (1) the magnetic activity level in the nighttime sector of the auroral zone influences considerably the position of the daytime precipitation boundaries during magnetic storms and that (2) the ring current inputs considerably into the value of the Dst variations.  相似文献   

4.
The solar polar magnetic field has attracted the attention of researchers since the polar magnetic field reversal was revealed in the middle of the last century (Babcock and Livingston, 1958). The polar magnetic field has regularly reversed because the magnetic flux is transported from the sunspot formation zone owing to differential rotation, meridional circulation, and turbulent diffusion. However, modeling of these processes leads to ambiguous conclusions, as a result of which it is sometimes unclear whether a transport model is actual. Thus, according to the last Hinode data, the problem of a standard transport model (Shiota et al., 2012) consists in that a decrease in the polar magnetic flux in the Southern Hemisphere lags behind such a decrease in the flux in the Northern Hemisphere (from 2008 to June 2012). On the other hand, Svalgaard and Kamide (2012) consider that the asymmetry in the sign reversal simply results from the asymmetry in the emerging flux in the sunspot formation region. A detailed study of the polar magnetic flux evolution according to the Solar Dynamics Observatory (SDO) data for May 2010–December 2012 is illustrated in the present work. Helioseismic & Magnetic Imager (HMI) magnetic data in the form of a magnetic field component along the line of sight (the time resolution is 720 s) are used here. The magnetic fluxes in sunspot formation regions and at high latitudes have been compared.  相似文献   

5.
6.
利用磁暴研究地震,特别是预测大地震的报道经常见诸公共媒体,引发诸多质疑.本研究以地震和磁暴(主相最低点)时刻的先后关系为研究对象,在不同时间窗、不同磁暴大小条件下,统计不同震级的地震与磁暴发生之间的时差及对应的地震比例,发现该比例随震前时间窗的增加或磁暴强度的减弱而不断增大,与起始震级基本无关.讨论磁暴对后续地震的"预...  相似文献   

7.
Using Pc1 data gathered at Ottawa (45.4°N, 75.6°W; L = 3.5) during the International Magnetospheric Study (IMS) period, relationships between ssc, Dst, and the occurrence of Pc1 pulsations are examined. It is found that the sudden compressions of the magnetoshere that took place in the postnoon period (13–22 hLT) frequently produced Pc1 pulsations at Ottawa. This pulsational activity took place about 25 to 125 hours after the occurrence of ssc’s of amplitude 5–25 nT and duration 2–6 min. Pc1’s also occur 20 to 40 hours after maximum Dst deviations in the range 50–110 nT, when the ring current has decayed to a considerable extent (5 nT < Dst < 25 nT). In agreement withHeacock andKivinen (1972), it appears that during the storm recovery phase energetic particles of the ring current with anisotropic pitch angle distribution interact with the surrounding cold plasma of the plasmasphere. When stable trapping limit is reached, proton cyclotron instability is triggered and pulsations in the Pc1 period range are generated.  相似文献   

8.
A complete statistical study is made for all magnetic storms reported by Beijing observatory during 1979 to 2000. It includes occurrence dependence on type of the storm, intensity of the storm, and time (year, season, and month). A comparison between the occurrence and the number of sunspots is also carried out. Further statistical analysis for part of the great magnetic storms shows that there are obvious differences between activity level represented by Beijing observatory and that by Dst. Such differences depend upon local time of Beijing (BLT). Cubic polynomial fitting results show that the activity level is lower at dawn and higher at dusk in Beijing than that represented by Dst, and the difference between dusk and dawn is about 63% of Dst.  相似文献   

9.
The relativistic electron fluxes of the Earth's outer radiation belt are subjected to strong temporal variations. The most prominent changes are initiated by fast solar wind streams impinging upon the magnetosphere, which often also cause enhanced substorm activity and magnetic storms. Using 4 years of data from the particle detector REM aboard the UK satellite Strv-1b in a GTO, we investigated the relation between these different appearances of geomagnetic activity. A typical sequence is that there is a drop in the relativistic electron intensity during the main phase of the magnetic storm and a successive enhancement during the recovery phase which sometimes leads to much higher than pre-storm fluxes. Whereas the flux drop is well correlated with the magnetic storm intensity and is mainly due to the deceleration and loss of particles caused by the ring-current-induced magnetic field changes, there is only a bad correlation between the post-storm electron flux and Dst. As we show here, it is much more the level of substorm activity during the whole event which determines the size of the flux enhancements.  相似文献   

10.
11.
During the main phase of large magnetic storms significant energy can be deposited in the ionosphere but produce no commensurate magnetic perturbations on the ground. Consequently, models designed to predict and specify thermospheric energy budgets based on ground magnetic data are negatively impacted. To quantify these effects we compare thermospheric densities predicted by the MSIS model with those inferred from accelerometer measurements by the Gravity Recovery and Climate Experiment (GRACE) satellites during two magnetic storm periods in 2004. Although predictions and measurements are in substantial agreement during quiet times, the model significantly underpredicts densities during storms. Also, the model's maxima occur several hours after observed stormtime peaks. We show that polar cap potentials and magnetospheric electric fields derived from interplanetary parameters measured by the Advanced Composition Explorer satellite are roughly proportional to neutral densities observed by GRACE with lead times of ∼4 h. Finally, ion drift meter data from Defense Meteorological Satellite Program spacecraft suggest that unpredicted positive and negative spikes found in high latitude accelerometer data reflect encounters with strong head and tail thermospheric winds driven by anti-sunward convecting plasma.  相似文献   

12.
Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also pronortional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.  相似文献   

13.
The physical processes underlying several phenomena of upper-atmospheric storms are described: magnetospherically driven ion convection and Joule heating and their impact on the high-latitude thermosphere and ionosphere; global changes in thermospheric circulation and composition; traveling atmospheric disturbances; and effects of electric-field penetration to middle and low latitudes. Examples from the 1997 January 10–11 storm are used to illustrate some of these features. It is pointed out that not only the magnitude, but also the sign of many storm-time changes at any given location depend sensitively on the temporal and spatial variations of auroral particle precipitation and high-latitude electric fields. In order for simulation models to be able to predict upper-atmospheric storm effects accurately, improved determination of the high-latitude inputs will be required.  相似文献   

14.
本文利用1998~2006年与磁云有关的80起中强磁暴(Dst*≤-50 nT),对其主相期间不同发展阶数磁暴的行星际起因进行了统计分析.重点研究了鞘区磁场单独作用、磁云本体单独作用、鞘区与磁云共同作用以及其他复杂行星际结构在磁暴主相多阶发展中的相对重要性,并对导致磁暴主相增加一阶的行星际起因做了初步分析.统计结果表明:(1)有一半以上的中强磁暴主相具有多个发展阶段,其中一阶磁暴和多阶磁暴(包括二阶和二阶以上磁暴)在中等磁暴(-100 nTDst*≤-50 nT)中所占比例分别为53.8%和46.2%,在强磁暴(Dst*≤-100 nT)中所占比例分别为42.6%和57.4%;(2)随着磁暴主相发展阶数的增加,磁暴主相的平均持续时间也随之延长;(3)鞘区磁场单独作用、磁云本体单独作用、鞘区与磁云共同作用、磁云与其他行星际结构共同作用都可能引起磁暴主相的多阶发展;(4)有46.5%的多阶磁暴是由鞘区磁场与磁云本体共同作用引起,有34.9%的多阶磁暴是由鞘区磁场单独作用和磁云本体单独作用引起,其余的多阶磁暴是由其他复杂行星际结构引起;(5)在鞘区磁场单独作用的事件中,鞘区磁场结构是影响磁暴主相多阶发展的重要因素之一;(6)磁暴主相的多阶发展与晨昏电场Ey、行星际磁场Bz南向分量的发展密切相关,随着Ey和Bz阶段性的发展,磁暴主相也呈现多阶发展的趋势,且每阶Dst*极小值与该阶Eymax和Bzmin有很好的线性相关性,线性耦合方程分别为Dstmin* =-34.62-11.89×Eymax 和Dstmin* =-5.90+8.50×Bzmin.  相似文献   

15.
利用两种不同的磁场模式,协同GOES10/12、Polar及Geotail的实测资料,本文对3种不同强度磁暴的磁层磁场进行了详细分析,从而检验了两种不同磁场模式的可靠性,给出了模式间的性能对比.我们采用Tsyganenko经验模式及Alexeev抛物面模式,分别模拟了2004年4月、7月和11月的磁暴,3个磁暴过程中最强Dst指数分别达到-110 nT,-150 nT以及-289 nT.结果发现:T01模式对于中等磁暴时磁场模拟准确,而由于建立模式的数据库中强磁暴资料少,模式中不包含亚暴效应,T01对于强磁暴磁场模拟的误差增大,磁场分量远远偏离观测值;A2000模式缺少部分环电流及Ⅱ区场向电流,模式对于近地点Polar轨道上的磁场扰动模拟不足,对强磁暴时亚暴效应的过高模拟使其模拟的磁场分量偏高;T01模式对于中等磁暴时磁场的模拟效果明显好于A2000模式,随着磁层扰动的增强,T01与A2000模式的总体性能相当.  相似文献   

16.
The dynamics of the magnetospheric magnetic field during the magnetic storms of different intensity has been studied. The magnetic field variations on the Earth’s surface were calculated using the paraboloid model of the magnetosphere, taking into account the induction currents flowing in the diamagnetically conductive Earth. Dst and its components have been calculated for ten magnetic storms. It has been indicated that relative contributions of magnetospheric sources to Dst change depending on the storm power. For weak and moderate storms, the contribution of the magnetotail current sheet can reach values comparable with the ring current contribution and, sometimes, can even exceed this contribution. For strong storms, the ring current field dominates over the tail current field, the absolute value of which does not exceed 150 nT (also achieved during less intense storms). For storms with minimum Dst exceeding-200 nT, the tail current field is saturated, whereas the ring current can continue developing.  相似文献   

17.
Certain large magnetic lays, registered by magnetometers in the auroral and subauroral zones simultaneously with SC instant and accompanying events, substantially differ from activations at the beginning of auroral substorm. Such basic substorm elements as energy accumulation during the growth phase and breakup—activation in the localized region near midnight—are absent. During such sudden auroral activations (SAs), a disturbance begins in a wide sector of longitudes and latitudes. It is proposed to combine SAs into an individual class of magnetospheric disturbances. The particle acceleration and injection mechanism, which causes SAs, is considered.  相似文献   

18.
特大地磁暴的一种行星际源:多重磁云   总被引:1,自引:0,他引:1       下载免费PDF全文
2001年3月31日观测到的大的多重磁云(Multi MC)事件造成了第23周太阳峰年(2000~2001)最大的地磁暴(Dst=-387nT). 通过分析ACE飞船的观测数据, 描述了这个多重磁云在1AU处的磁场和等离子体特征. 并且根据SOHO和GOES卫星的观测资料, 认证了它的太阳源. 在这次事件中, 由于多重磁云内部异常增强的南向磁场, 使之地磁效应变得更强, 它大大的延长了地磁暴的持续时间. 观测结果与理论分析表明, 多重磁云中子磁云的相互挤压使磁云内的磁场强度及其南向分量增强数倍, 从而加强了地磁效应. 因此, 研究认为多重磁云中子磁云之间的相互压缩是造成特大地磁暴的一种机制. 此外, 研究发现形成多重磁云的日冕物质抛射(CMEs)并不一定要来自同一太阳活动区.  相似文献   

19.
强震前ELF/VLF磁场的扰动特征统计研究   总被引:2,自引:0,他引:2  
本文利用DEMETER卫星记录的变化磁场数据统计研究了2005—2009年北半球7级以上强震前后空间磁场的扰动特征.在震中±10°范围内利用震前2个月至震后1个月的5年同期观测的ELF/VLF[370~897 Hz]频段磁场功率谱密度数据构建了背景场,定义了表征空间磁场在地震时段相对于背景场的扰动幅度指标.统计研究发现26个强震中42%的地震主要表现为震前磁场扰度幅度逐渐上升,超过3倍标准差,随后在扰度幅度下降过程中发震.35%强震在地震前10天内最大扰动幅度超过3倍标准差,在扰度幅度处于最高值期间发震,震后磁场扰动幅度逐渐回落.23%的强震在震前震后无明显规律.随机事件测试发现在空间天气平静且无强震条件下随机地点上空的磁场无明显的时空演化规律,且随机地点上空的空间磁场相对于背景场的平均扰度幅度很小,最大扰度幅度从未超过2倍标准差,并且没有明显的随时间变化特征.  相似文献   

20.
The correlation between cyclic (11-year) variations in geomagnetic activity and tropical cyclogenesis during the completed solar activity cycle (cycle 23, 1996–2006) is studied. The total number of the semidiurnal intervals, with the mean values of the planetary a p index not less than 40, for each year and the annual number of cyclones, regardless of their intensity, are used as the characteristics. The correlation coefficients r are calculated for each of the following four cyclogenesis regions: the Atlantic, northeastern and central Pacific, northwestern Pacific, and water areas of oceans and seas in the Southern Hemisphere. The conclusion that the correlation exists between magnetic storms and tropical cyclones in the Atlantic, obtained earlier by Ivanov [2006] on the basis of the data for 1996–2005, is confirmed. It has been found that the linear correlation coefficient r changed in different regions from positive to negative values: 0.55, 0, ?0.50, and ?0.50, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号