首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly oriented silicon nanowire (SiNW) layer was fabricated by etching Si substrate in HF/(AgNO3 + Na2S2O8) solution at 50 °C. The morphology and the photoluminescence (PL) of the etched layer as a function of Na2S2O8 concentration were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). It was demonstrated that the morphology of the etched layers depends on the Na2S2O8 concentration. Room-temperature photoluminescence (PL) from etched layer was observed. It was found that the utilisation of Na2S2O8 decreases PL peak intensity. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

2.
Effect of temperature on pulsed laser deposition of ZnO films   总被引:1,自引:0,他引:1  
M. Liu 《Applied Surface Science》2006,252(12):4321-4326
ZnO thin films have been deposited on Si(1 1 1) substrates at different substrate temperature by pulsed laser deposition (PLD) of ZnO target in oxygen atmosphere. An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the deposition temperature on the thickness, crystallinity, surface morphology and optical properties of ZnO films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), photoluminescence (PL) spectrum and infrared spectrum. The results show that in our experimental conditions, the ZnO thin films deposited at 400 °C have the best surface morphology and crystalline quality. And the PL spectrum with the strongest ultraviolet (UV) peak and blue peak is observed in this condition.  相似文献   

3.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

4.
(2 0 2)/(2 2 0)-oriented epitaxial β-FeSi2 thin films were deposited on textured Si (1 0 0) substrate by magnetron sputtering. The influences of thickness and annealing temperature on the β-FeSi2 crystallization were studied to find the optimal condition. The results of surface morphology and optical property measurements showed that the inverted pyramid array in the surface of β-FeSi2 thin films could reduce the surface reflection of β-FeSi2. In dark condition, the β-FeSi2/textured-Si heterojunction showed diode property with rectifying ratio of 2.89 × 105 and built-in potential of 0.58 V. These results indicated the potential application of textured Si substrate in β-FeSi2 solar cells.  相似文献   

5.
ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al2O3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap (Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.  相似文献   

6.
The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.  相似文献   

7.
J.P. Kar  W. Lee 《Applied Surface Science》2008,254(20):6677-6682
Vertical aligned ZnO nanowires were grown by MOCVD technique on silicon substrate using ZnO and AlN thin films as seed layers. The shape of nanostructures was greatly influenced by the under laying surface. Vertical nanopencils were observed on ZnO/Si, whereas the nanowires on both sapphire and AlN/Si substrate have the similar aspect ratio. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy (HRTEM) confirmed the single crystalline growth of the ZnO nanowires along [0 0 1] direction. Room-temperature photoluminescence (PL) spectra of ZnO nanowires on AlN/Si clearly show a band-edge luminescence accompanied with a visible emission. More interestingly, no visible emission for the nanopencils on ZnO/Si substrates, were observed.  相似文献   

8.
Formation mechanism of Si(1 0 0) surface morphology in alkaline fluoride solutions was investigated both theoretically and experimentally. By analysis of Raman spectra of silicon wafer surfaces and three kinds of etching solutions (NaOH, NaOH/NH4F, and NaOH/NH4F/Na2CO3) with and without addition of Na2SiO3·9H2O, no Si-F bond is formed, F and CO32− ions accelerate the condensation of Si-OH groups. Based on experimental results, it is proposed that bare silicon and silicon oxide coexist at the wafer surface during etching process and silicon oxide of different structure, size, and site at the surface manufacture different surface morphology in alkaline fluoride solution.  相似文献   

9.
《Composite Interfaces》2013,20(8):733-742
Zinc thin films were deposited onto porous silicon (PSi) substrates by dc sputtering using a Zn target. These films were then annealed under flowing (6 l/min) oxygen gas environment in the furnace at 600°C for 2 h. Porous silicon is used as an intermediate layer between silicon and ZnO films and it provides a large area composed of an array of voids. The PSi samples were prepared using photoelectrochemical method on n-type silicon wafer with (111) and (100) orientation. To prepare porous structures, the samples were dipped into a mixture of HF:ethanol (1:1) for 5 min with current densities of 50 mA/cm2, and subjected to external illumination with a 500 W UV lamp. The surface morphology and the nanorod structure of the ZnO films were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). We synthesized the ZnO nanorods with diameter of 80–100 nm without any catalysts or templates. The XRD pattern confirmed that the ZnO nanorods were of polycrystalline structure. The surface-related optical properties have been investigated by photoluminescence (PL) and Raman measurements at room temperature. Micro-Raman results showed that A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at 522 cm–1 and 530 cm–1, respectively. PL spectra peaks are clearly visible at 366 cm–1 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The PL spectral peak position in ZnO nanorods on porous silicon is blue-shifted with respect to that in unstrained ZnO (381 nm).  相似文献   

10.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

11.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

12.
《Composite Interfaces》2013,20(7):627-632
Porous tin oxide was prepared on silicon(111) substrate by the sol–gel route. Then, the samples were dried in air at 600°C for 30 min in an electric furnace. Scanning electron microscope (SEM) images indicated the high density of the pores. Circular microvoids formed by the rigid shaped microarray network of 200–300 nm sizes are clearly seen in the plan view SEM image. The high homogeneity and uniformity of the porous region could also be visualized by this easy method. Nanocrystalline zinc oxide (ZnO) thin films have been deposited onto porous SnO2substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The surface morphology of the nanocrystalline ZnO films was characterized by scanning electron microscope (SEM). Photoluminescence (PL) spectroscopy is a powerful, contactless and excellent nondestructive optical tool to study the acceptor binding energy of ZnO nanostructures. The PL measurements were also operated at room temperature. The peak luminescence energy in nanocrystalline ZnO on porous SnO2 is blue-shifted with regard to that in bulk ZnO (381 nm). PL spectra peaks are distinctly apparent at 375 nm for ZnO film grown on porous SnO2/Si(111) substrates.  相似文献   

13.
ZnO films were prepared using radio frequency magnetron sputtering on Si(1 1 1) substrates that were sputter-etched for different times ranging from 10 to 30 min. As the sputter-etching time of the substrate increases, both the size of ZnO grains and the root-mean-square (RMS) roughness decrease while the thickness of the ZnO films shows no obvious change. Meanwhile, the crystallinity and c-axis orientation are improved by increasing the sputter-etching time of the substrate. The major peaks at 99 and 438 cm−1 are observed in Raman spectra of all prepared films and are identified as E2(low) and E2(high) modes, respectively. The Raman peak at 583 cm−1 appears only in the films whose substrates were sputter-etched for 20 min and is assigned to E1(LO) mode. Typical ZnO infrared vibration peak located at 410 cm−1 is found in all FTIR spectra and is attributed to E1(TO) phonon mode. The shoulder at about 382 cm−1 appearing in the films whose substrates were sputter-etched for shorter time (10-20 min) originates from A1(TO) phonon mode. The results of photoluminescence (PL) spectra reveal that the optical band gap (Eg) of the ZnO films increases from 3.10 eV to 3.23 eV with the increase of the sputter-etching time of the substrate.  相似文献   

14.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

15.
 Photoluminescence (PL) properties of Er-doped silicon rich oxide thin films deposited on Si substrate by co-evaporation of silicon monoxide and Er under different atmospheres are investigated. The samples exhibit luminescence peak at 1.54 μm which could be assigned to the recombination in intra-4f Er3+ transition. PL shows that this transition is highest when ammonia atmosphere is used during deposition followed by an annealing temperature at 850 °C in 95% N2+5% H2 gas (forming gas). In fact, we believe that the presence of the N atoms around Er ions increases the intensity of the 1.54 μm luminescence.  相似文献   

16.
Three different gases (nitrogen (N2), oxygen (O2) and argon (Ar)) were used as background gases during the growth of pulsed laser deposition (PLD) Y2SiO5:Ce thin films. A Krypton fluoride laser (KrF), 248 nm was used for the PLD of the films on silicon (Si) (1 0 0) substrates. The effect of the background gases on the surface morphology, crystal growth and luminescent properties were investigated. All the experimental parameters, the gas pressure (455 mT), the substrate temperature (600 °C), the pulse frequency (8 Hz), the number of pulses (4000) and the laser fluence (1.6±0.2) J/cm2 were kept constant. The only parameter that was changed during the deposition was the ambient gas species. The surface morphology and average particle sizes were monitored with scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were used to determine the crystal structure and composition, respectively. Cathodo- (CL) and photoluminescence (PL) were used to measure the luminescent intensities for the different phosphor thin films. The nature of the particles, ablated on the substrate, is related to the collisions between the ejected particles and the ambient gas particles. The CL and PL intensities also depend on the particle sizes. A 144 h (coulomb dose of 1.4×104 C cm−2) electron degradation study on the thin films ablated in the Ar gas environment resulted in a decrease in the main CL intensity peak at 440 nm and to the development of a new very broad luminescent peak spectra ranging from 400 to 850 nm due to the growth of a SiO2 layer on the surface.  相似文献   

17.
Transparent conductive SnO2:F thin films with textured surfaces were fabricated on soda-lime-silica glass substrates by spray pyrolysis. Structure, morphology, optical and electrical properties of the films were investigated. Results show that the film structure, morphology, haze, transmittance and sheet resistance are dependent on the substrate temperature and film thickness. An optimal 810 nm-thick SnO2:F film with textured surface deposited at 520 °C exhibits polycrystalline rutile tetragonal structure with a (2 0 0) orientation. The sheet resistance, average transmittance in visible region, and haze of this film were 8 Ω/□, 80.04% and 11.07%, respectively, which are suitable for the electrode used in the hydrogenated amorphous silicon solar cells.  相似文献   

18.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

19.
《Composite Interfaces》2013,20(5):441-448
Zinc oxide thin films have been deposited onto porous silicon (PSi) substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The advantages of the porous Si template are economical and it provides a rigid structural material. Porous silicon is applied as an intermediate layer between silicon and ZnO films and it contributed a large area composed of an array of voids. The nanoporous silicon samples were adapted by photo electrochemical (PEC) etching technique on n-type silicon wafer with (111) and (100) orientation. Micro-Raman and photoluminescence (PL) spectroscopy are powerful and non-destructive optical tools to study vibrational and optical properties of ZnO nanostructures. Both the Raman and PL measurements were also operated at room temperature. Micro-Raman results showed that the A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at around 522 and 530 cm–1, re- spectively. PL spectra peaks are distinctly apparent at 366 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The peak luminescence energy in nanocrystalline ZnO on porous silicon is blue-shifted with regard to that in bulk ZnO (381 nm). The Raman and PL spectra pointed to oxygen vacancies or Zn interstitials which are responsible for the green emission in the nanocrystalline ZnO.  相似文献   

20.
Two types of novel Mg-doped pencil-shaped ZnO microprisms had been successfully synthesized on Mg(NO3)2-coated Si (1 1 1) substrates by thermal chemical vapor deposition method. The as-prepared ZnO prisms were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission transmission electron microscope (FETEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectroscopy. The straight microprisms are made up of hexagonal pyramids tips and hexagonal prisms bodies. Both of the structures are perfect single crystal and have grown along the [0 0 0 1] direction preferentially. Photoluminescence reveals a red-shift at around 387 nm which is induced by Mg doping and a green light emission peak at around 511 nm. The pencil-shaped ZnO microstructure can provide an improvement in novel ultraviolet light-emitting devices. In addition, the growth mechanism of the special ZnO microprisms is discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号