首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
随着锂离子电池在电动汽车和储能领域的大量使用,废旧锂离子电池所面临的环境和资源问题日益突出。为了更好地资源利用和环境保护,世界各国对废旧锂离子电池中有价金属的回收和利用,及无危害处理相当重视。文中综述了国内外对废旧锂离子电池回收技术的研究现状,比较了不同回收途径的优缺点,讨论了回收技术的发展方向。本文中归纳的废旧锂离子电池回收方法,在目前回收领域中得到了广泛地研究,并且起到了显著效果,但是大多集中在对锂、钴、镍、锰、铜、铝等有价金属的回收利用上,对废旧锂离子电池中的导电碳、石墨以及电解质的回收和处理方面的研究较少,对工艺过程中产生的污染和安全性问题也缺乏系统的研究。另外,随着锂离子电池生产技术的发展,新的电极材料将会出现并取代过渡金属氧化物,比如单质硫、导电聚合物等;同时也需要相应的电解液与之匹配,如新型的有机电解液、聚合物电解质等,这将向废旧锂离子电池回收技术提出了新的要求。今后废旧锂离子电池资源化回收技术的研究方向是降低成本,减少污染和实现回收物质的多元化以及提高回收率。  相似文献   

2.
废旧三元锂离子电池正极有价金属回收进展   总被引:2,自引:2,他引:2       下载免费PDF全文
随着锂离子电池在新能源汽车等多领域的广泛应用,废旧三元锂离子电池(LIBs)的数量不断增多,LIBs中有价金属的回收资源化成为了全球热点话题。综合阐述了近几年较为常用的LIBs回收方法,主要概括为火法冶金工艺、湿法回收工艺、火法-湿法联合浸出工艺。其中火法-湿法联合浸出工艺因其回收率高、过程简单、环境污染小、成本较低具有较大的工业发展前景。  相似文献   

3.
从废弃锂离子电池中回收有价金属的技术   总被引:2,自引:1,他引:1  
大量废弃锂离子电池会对环境造成污染,而且也造成资源浪费.近年来,从锂离子废旧电池中回收有价资源的研究发展很快.干法和湿法技术比较成熟,但存在能耗高、二次污染、资源回收率不高等问题.未来的研究方向是寻找一种更为合理、有效、清洁的金属回收和资源利用途径,而生物浸出技术有望充当这一角色.  相似文献   

4.
锂离子电池以其优异的性能得到了广泛的应用,但其废弃量也在逐年增加.如果不进行有效地处理,不仅给环境带来巨大的压力,而且也会造成资源的极大浪费.基于此,介绍了锂离子电池的主要构成及回收必要性,详细综述了目前废旧锂离子电池正极材料有价资源回收方法.最后提出当前废旧锂离子电池回收存在的问题,并对未来发展方向作了展望,从经济和环境保护两方面考虑废旧电池材料化工艺最有可能成为今后该领域研究的方向.   相似文献   

5.
随着锂离子电池的广泛应用,大量的废旧锂离子电池产量逐年增加,由于负极材料容量较低(≈175 mAh·g-1)以及需要较高的工作电势,硅负极材料仍然处于研究阶段,所以对大量的退役锂离子电池石墨负极进行高效回收直接再生具有重要的现实意义。为此,本文介绍近年来废旧锂离子电池石墨负极材料回收利用研究现状,分析废旧石墨负极常用回收利用方法优缺点,主要包括火法回收、湿法回收和材料再生等方案,并对废旧锂离子电池石墨负极材料的高效、绿色回收利用进行了展望。  相似文献   

6.
7.
8.
随着锂离子电池进入报废期,从废旧锂离子电池中回收有价金属具有重要的经济和环境意义。提出了一种生物质气化制氢与废旧锂离子电池还原焙烧回收相结合的方法。以松木屑(PS)为原料,在675℃条件下进行水蒸气气化,利用气化过程中产生的还原性气体(H2、CO和CH4等)和半焦(C)对LiCoO2进行原位分解还原,并使用CaO作为CO2吸附剂,进一步提高气体中H2的含量。结果表明,在675℃且PS与LiCoO2混合质量比为1的条件下,Li和Co的回收率分别为83.4%±4%和96.5%±2%,且H2含量高达73%。本研究提供了一种绿色、环保、高效回收废旧锂电池中有价金属的有效方法。  相似文献   

9.
10.
废旧锂离子电池的无害化处理及回收利用已经成为各个科研院所研究的重点及热点内容。本文系统介绍了废旧锂离子电池的资源现状与目前回收利用的各种不同的工艺路线,并且详细分析了各种工艺路线的优缺点,以期为废旧锂离子电池的回收与利用找到新的思路与方法。最终认为“化学?物理联合法”为当前废旧锂离子电池无害化处置及回收利用的较为理想的方法。   相似文献   

11.
伴随着便携式电子产品的快速更迭和新能源动力汽车行业的迅猛发展,大量的锂离子电池迎来报废退役,其回收迫在眉睫。焙烧—水浸联合工艺不仅改进了传统火法熔炼工艺存在的高能耗、锂难以有效分离等问题,又解决了湿法回收工艺过程试剂耗量大、废水处理等缺点,将是失效锂离子电池正极材料有效处理回收工艺发展的未来趋势及前进方向。综述了当前联合工艺处理失效锂离子电池正极材料的研究进展,主要分为还原焙烧、盐化焙烧两大类,盐化焙烧工艺极大降低了所需焙烧温度,根据添加剂的不同可细分为硫酸化焙烧、氯化焙烧、硝化焙烧。通过对比分析不同联合工艺的优势和不足,总结展望联合工艺未来的发展趋势及前景,为未来研发更加清洁高效的回收工艺提供参考。  相似文献   

12.
随着新能源汽车的迅猛发展,磷酸铁锂动力电池退役后将产生大量的废旧电池,若不及时处理将会污染环境和浪费金属资源。介绍了近几年来废旧磷酸铁锂电池正极材料回收利用技术进展,包括湿法回收有价金属、废旧磷酸铁锂修复再生和分解再合成磷酸铁锂等,并指出不同回收方法的优势与不足。最后展望了未来废旧磷酸铁锂电池回收技术的发展方向。  相似文献   

13.
针对锂离子电池正极材料活性物质与集流体铝箔的分离问题,提出了循环碱浸—降温结晶氢氧化铝工艺,并确定了较佳工艺参数。结果表明,优化后的工艺参数为:浸出段温度90℃、浸出时间2h,降温结晶段温度40℃,时间40h,晶种添加量1.5倍,碱浸渣中平均铝含量为0.78%,平均浸出率为90.98%;浸出液经降温结晶后得到三水铝石,其中铝含量为32.14%,锂、钴、钠分别为0.15%、0.04%和0.51%,可作为回收铝的原料;结晶后母液含铝约22.08g/L,可返回碱浸段循环利用。  相似文献   

14.
复杂废旧混合正极材料存在浸出率较低、成本较高、酸浸液金属分离流程较长等问题。采用硫酸为酸浸剂、H_2O_2为还原剂对废旧混合正极材料进行浸出,采用碳酸盐共沉淀法合成三元NCM622,对其进行结构和形貌分析,以及电化学性能的测试。结果表明,浸出最优条件为:硫酸浓度2.5mol/L、H_2O_2添加量0.6mol/L、搅拌速率400r/min、时间30min、温度80℃,此条件下,Li、Ni、Co、Mn的浸出率分别为98.79%、97.05%、96.45%和96.31%。XRD测试表明,再生NCM622无杂峰,且呈典型的α-NaFeO_2层状结构,SEM显示NMC622颗粒大小均匀、少团聚现象。电化学测试表明,1C倍率下首圈放电比容量为152.87mAh/g,循环100圈后,容量保持率为91.35%。  相似文献   

15.
废弃锂离子电池富钴产物焙烧提纯研究   总被引:1,自引:2,他引:1       下载免费PDF全文
在800℃下对从废弃锂离子电池回收的-0.25mm富钴粉体进行焙烧提纯,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线荧光光谱仪(XRF)分析了-0.25mm富钴粉体焙烧前后的物相组成、颗粒形貌、元素组成变化;并通过硫酸双氧水浸出体系测试了焙烧对后续浸出的影响。结果表明,焙烧可有效去除富钴粉体中的有机物,实现钴的初步提纯,钴含量从29.57%提高至52.36%;焙烧过程中,有机物被全部去除,烧失量为36.14%。部分LiCoO_2转变为变为难浸出的Co_3O_4形式,焙烧条件需要进一步优化控制,减少Co_3O_4的产生。  相似文献   

16.
采用改进溶胶-凝胶法合成了具有良好的晶体结构和电化学稳定性的正极材料Li[Ni1/3Co1/3Mn1/3]0.9Ti0.1O2,通过优化前驱体的制备来提高原子混合程度,从而达到改善材料循环稳定性的目的。XRD测试表明,样品的Li+/Ni2+混排程度很低,TEM图片显示材料的结晶度很高,原子排列有序,这有利于实现更大的锂离子扩散系数。在0.5 C倍率下循环200次后,材料的容量保持率高达84.6%,与未掺钛的LiNi1/3Co1/3Mn1/3O2仅为52.0%相比,钛掺杂的材料表现出优异的电化学性能。此外,掺钛材料在0.1、0.2、0.5、1.0、2.0和5.0 C时具有更好的充放电倍率性能,分别为164.9、162.4、152.4、142.4、129.7和102.8 mAh/g。研究成果可以为设计具有更好电化学性能的锂离子电池材料提供参考。  相似文献   

17.
Rare Earth Elements-Doped LiCoO2 Cathode Material for Lithium-Ion Batteries   总被引:1,自引:0,他引:1  
Thedevelopmentoflithium ionbatteriesreliesonthesuccessfuldevelopmentoflithiumintercalationandde intercalationcompounds ,whichareusedasthecathodeandanodeactivematerials .Forthecathode ,LiCoO2 ,LiNiO2 andLiMn2 O4 areselectedasthecan didate .Amongthematerials ,thelayeredtransitionmetaloxideofLiCoO2 isregardedasthemostattrac tivecathodematerialforcommerciallithium ionbat terybecauseofitshighspecificcapacity ,highoperat ingcellvoltageandexcellentrechargeability .Recent ly ,moreextensivestudies…  相似文献   

18.
废旧锂离子电池正极材料中钴铝同浸过程研究   总被引:1,自引:2,他引:1       下载免费PDF全文
通过基础热力学数据计算以及绘制反应体系的E-pH图,对废旧锂离子电池正极材料回收中钴铝同浸过程进行研究,考察了硫酸浓度、浸出时间、浸出温度、双氧水用量及液固比对钴、铝浸出率的影响。结果表明,在273K,-0.277相似文献   

19.
失效锂离子电池直接空气氧化氨性浸出研究   总被引:1,自引:1,他引:0  
采用含氨和铵盐(硫酸铵、碳酸铵或氯化铵)的水溶液为浸出介质,在常温下通入空气直接浸出失效锂离子电池中的金属元素。在含铵盐的氨性溶液中,锂、钴的浸出率分别为小于22.4%、12.5%,而铜的浸出率可高达98.86%,有利于铜与锂、钴元素的分离。结果表明,含碳酸铵的氨性溶液浸铜效果最佳。  相似文献   

20.
The cathode material plays an important role inthe performance of lithium ion batteries. Commerciallithium cells use lithium cobalt oxide cathodes and thehigh cost of this material has prompted the design andsynthesis of alternate insertion hosts. Among these al ternatives, spinel LiMn2O4 has been found to bepromising in terms of specific energy, non toxicity,and low cost[1~3]. It is thought that lithium man ganese oxides will be used in lithium ion batteries forel…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号