首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于离子液体对CO2具有较好的溶解选择性,离子液体支撑液膜分离CO2越来越受到关注。比较了含3种不同阴离子的常规离子液体([bmim][BF4]、[bmim][PF6]、[bmim][Tf2N])作为支撑液膜的液膜相分离CO2/CH4的性能,考察了咪唑环上烷基链长对离子液体支撑液膜性能的影响。考虑向离子液体中引入胺基和羧基等亲CO2基团,制备了1-丁基-3-甲基咪唑丙氨酸离子液体([bmim][β-Ala]),考察了 [bmim][β-Ala]支撑液膜分离CO2/CH4的性能,并对在CO2渗透测试前后的支撑液膜进行了FT-IR分析,发现氨基酸离子液体中的-NH2和CO2的较强作用以及该离子液体的高黏性影响了CO2的透过性,使[Bmim][β-Ala]支撑液膜的CO2透过率低。  相似文献   

2.
A cheap protic ionic liquid (PIL), 3‐(Dimethylamino)‐1‐propylamine acetate (abbreviated as [DMAPAH][Ac]), is investigated in this work as the activator of N‐methyldiethanolamine (MDEA) for fast capture of CO2. The PIL‐activated MDEA solutions show excellent performance in absorption rate and capacity (≥2.5 mol·kg?1). A novel absorption mechanism is proposed to account for the phenomenon, where the shuttling role of the PIL is described in detail. Additionally, the enthalpy change ΔHSOL (?45 to ?52 kJ·mol?1), the turnover number of the PIL and the regeneration efficiency (>92%) are also measured. All these data show that the PIL‐mediated MDEA solutions may be used as a kind of promising absorbents for fast capture of CO2. © 2017 American Institute of Chemical Engineers AIChE J, 63: 209–219, 2018  相似文献   

3.
赵薇  贺高红  刘红晶  李凤华  张莹 《化工进展》2014,33(12):3292-3298,3308
离子液体支撑液膜在较大跨膜压差(0.25~0.3MPa)下的稳定性较差,具有较好稳定性的聚离子液体膜和离子液体-聚合物共混膜等逐渐被关注。本文综述了离子液体支撑液膜、聚离子液体膜、离子液体?聚合物共混膜等离子液体膜CO2分离性能、分离机理及稳定性的最新研究进展,介绍了无机颗粒-离子液体-聚合物共混膜的研究现状。指出离子液体膜的高CO2渗透通量与高稳定性之间的矛盾、共混膜结构调控难等问题是其工业化应用的主要障碍,提出开发新的膜材料、改进制膜工艺以减小膜厚、优化膜结构是提高膜的CO2渗透和分离性能,并保持膜稳定性的有效途径。无机颗粒-离子液体-聚合物共混膜兼有较高的CO2分离性能和较好稳定性,具有良好的应用前景,对其制备方法、结构、性能及CO2分离机理的研究将成为这一领域的热点。  相似文献   

4.
蒸汽活化钙基吸收剂联合脱碳脱硫特性   总被引:2,自引:2,他引:0  
利用管式炉(TF)、蒸汽发生器和热重分析仪(TGA)研究了钙基吸收剂联合脱碳脱硫以及水合特性,并通过N2吸附实验对不同烧结程度以及水合前后样品的孔隙结构进行了测量。结果表明,无水合时,40次碳化循环后的样品碳化活性降至18%,但仍具有44%的硫化活性,比新鲜剂仅低4%,说明脱碳失效剂仍是良好的脱硫剂。碳循环失效剂经蒸汽活化后其碳化活性可提高至68%左右,且具有与新鲜剂类似的活性下降规律。每两次碳化循环后进行一次蒸汽活化,可使样品保持65%的平均转化率。蒸汽活化后吸收剂硫化率可提高至80%,远高于新鲜剂,由电镜扫描实验发现这是由于水合时颗粒产生了大的裂缝和破碎,提供了大量产物可自由生长的外表面积。不考虑颗粒磨损,利用钙基吸收剂先循环脱碳再蒸汽活化最后脱硫是一项联合脱除烟气中CO2和SO2的新方法。  相似文献   

5.
CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.  相似文献   

6.
采用TGA测定纳米钙基CO2吸附剂在500~650℃温度范围内,CO2分压0.015~0.025 MPa氮气气氛中的吸附反应动力学。针对纳米钙基CO2吸附剂吸附CO2反应特征,提出以两倍最大吸附速率对应的时间点前后分别为快速反应段与慢速反应段。分别采用Boltzmann方程与Avrami-Erofeev方程拟合快速反应段与慢速反应段吸附反应动力学方程,得到纳米钙基CO2吸附剂在快速反应段与慢速反应段的活化能分别为27.52、70.25 kJ·mol-1。吸附率拟合与实验值平均相对误差分别为10.29%、4. 17%。研究测试了纳米钙基CO2吸附剂在650~800℃温度范围内,N2,0.02、0.04 MPa CO2分压氮气气氛中的分解反应动力学。忽略反应过程中传热、传质影响,采用收缩核模型,分别求得吸附剂在N2,0.02、0.04 MPa CO2分压氮气气氛中的活化能为141.9、34.7、113.2 kJ·mol-1。碳酸钙分解率与实验值比较平均相对误差分别小于5.66% 、7.82%、5.01%。  相似文献   

7.
In this study, a new CO2 electroreduction electrolyte system consisting of tetrabutylphosphonium 4-(methoxycarbonyl) phenol ([P4444][4-MF-PhO]) ionic liquid (IL) and acetonitrile (AcN) was designed to produce oxalate, and the electroreduction mechanism was studied. The results show that using the new IL-based electrolyte, the electroreduction system exhibits 93.8% Faradaic efficiency and 12.6 mA cm−2 partial current density of oxalate at −2.6 V. The formation rate of oxalate is 234.4 μmol cm−2 h−1, which is better than those reported in the literature. The mechanism study using density functional theory (DFT) calculations reveals that [P4444][4-MF-PhO] can effectively activate CO2 molecule through ester and phenoxy double active sites. In addition, in the phosphonium-based ionic environment, the potential barriers of the key intermediates *CO2 and *C2O42− are reduced by the induced electric field, which greatly facilitates the activation and conversion of CO2 molecule to oxalate.  相似文献   

8.
9.
受亲水有机胺与CO2进行化学反应的启发,将胺功能基团能引入到咪唑环上,合成含胺功能基团的离子液体.本研究以四个亚甲基为连接基,合成含胺功能基团的Gemini咪唑离子液体1,4一二(溴化3-乙胺基咪唑)丁烷,所合成的物质经红外、核磁共振氢谱表征确为目标产物.进行了简单的吸收实验,其对CO2的吸收比物理吸收高很多,可与CO...  相似文献   

10.
11.
To promote the development of ionic liquid (IL) immobilized sorbents and supported IL membranes (SILMs) for CO2 separation, the kinetics of CO2 absorption/desorption in IL immobilized sorbents was studied using a novel method based on nonequilibrium thermodynamics. It shows that the apparent chemical‐potential‐based mass‐transfer coefficients of CO2 were in three regions with three‐order difference in magnitude for the IL‐film thicknesses in microscale, 100 nm‐scale, and 10 nm‐scale. Using a diffusion‐reaction theory, it is found that by tailoring the IL‐film thickness from microscale to nanoscale, the process was altered from diffusion‐control to reaction‐control, revealing the inherent mechanism for the dramatic rate enhancement. The extension to SILMs shows that the significant improvement of CO2 flux can be obtained theoretically for the membranes with nanoscale IL‐films, which makes it feasible to implement CO2 separation by ILs with low investment cost. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4437–4444, 2015  相似文献   

12.
离子液体-水复配吸收剂捕获CO2性能   总被引:2,自引:0,他引:2       下载免费PDF全文
基于绿色合成方法制备出亲水性离子液体(ILs)[NH2-C3mim][Br],从有效降低CO2吸收-解吸操作成本出发,采用ILs-H2O复配吸收剂,开展了常温加压CO2吸收及吸收剂常温减压解吸再生实验。结果表明,比CO2吸收量(基于复配吸收剂或离子液体组分)随复配吸收剂中ILs组分浓度而变;吸收初期,CO2吸收速率随吸收剂配比变化显著;以CO2高吸收率和吸收剂低成本为目标,优选出新型水基复配吸收剂(离子液体与水质量比为1.38:1)。分别以水基离子溶液、改良热钾碱液和活化复配醇胺液为吸收剂,在自行搭建的超重力场强化吸收-连续逆流接触(加热或减压)解吸再生台架实验装置上进行了CO2捕获与吸收剂再生连续化实验。结果表明,在超重力场作用下,改良热钾碱液和活化复配醇胺液对CO2有较好的捕获,吸收率分别在98%、96%和90%以上,3种吸收剂经加热或减压解吸再生后均可循环回用,水基离子溶液吸收剂在常温减压下解吸更具有实际可操作性。  相似文献   

13.
The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.  相似文献   

14.
离子液体作为CO_2吸附剂的研究进展   总被引:1,自引:0,他引:1  
离子液体(ILs)是完全由特定阳、阴离子构成的在室温或近于室温下呈液态的物质,是一类新型"软"功能材料或介质,CO2能与ILs发生强相互作用,在其中具有很高的溶解度。本文综述了CO2在传统离子液体、功能化离子液体、聚合离子液体及其他形式离子液体中的溶解度,讨论了CO2在离子液体中溶解度的影响因素以及计算机模拟在离子液体溶解CO2研究中的应用,指出了离子液体作为吸收剂的优缺点,展望了其代替传统CO2吸收剂的研究前景。  相似文献   

15.
Carbon dioxide separation from CH4 is important to the environment and natural gas processing. Poly (ionic liquid)s (PILs) based on polyurethane structures are considered as potential materials for CO2 capture. Thus, a series of anionic PILs based on polyurethane were synthesized. The effects of polyol chemical structure and counter-cations (imidazolium, phosphonium, ammonium, and pyridinium) in CO2 sorption capacity and CO2/CH4 separation performance were evaluated. The synthesized PILs were characterized by NMR, DSC, TGA, dinamical mechanical thermo analysis (DMTA), SEM, and AFM. CO2 sorption, reusability, and CO2/CH4 selectivity were assessed by the pressure-decay technique. The counter-cation and polyol chemical structure play an important role in CO2 sorption and CO2/CH4 selectivity. PILs exhibited competitive thermal mechanical properties. Results showed that PILPC-TBP was the best poly (ionic liquid) for CO2/CH4 separation. Moreover, poly (liquid ionic) base polyol (polycarbonate) with phosphonium (PILPC-TBP) demonstrated higher CO2 sorption capacity (21.4 mgCO2/g at 303.15 K and 0.08 MPa) as compared to other reported poly (ionic liquids). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47536.  相似文献   

16.
The CO2 solubility data in the ionic liquid (IL) 1‐allyl‐3‐methylimidazolium bis(trifluoromethyl sulfonyl)imide, methanol (MeOH), and their mixture with different combinations at temperatures of 313.2, 333.2, and 353.2 K and pressures up to 6.50 MPa were measured experimentally. New group binary interaction parameters of the predictive universal quasichemical functional‐group activity coefficient (UNIFAC)‐Lei model, which has been continually advanced by our group, were introduced by correlating the experimental data of this work and the literature. The consistency between experimental data and predicted results proves the reliability of UNIFAC‐Lei model for CO2‐IL‐organic solvent systems. The newly obtained parameters were incorporated into the UNIFAC property model of Aspen Plus software to optimize a conceptual process developed for the purification of a CO2‐containing gas stream. The simulation results indicate that the use of IL either mixed with MeOH or purely considerably lowers the process power consumption and improves the process performance in terms of CO2 capture rate and solvent loss. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2168–2180, 2018  相似文献   

17.
18.
The enormous emission of carbon dioxide (CO2) from industries has triggered a series of environmental issues. In recent years, ionic liquids (ILs) as novel absorbents are widely used for CO2 capture owing to their low vapor pressure and tunable structures. IL-modified adsorbents have the advantages of both ILs and porous supports, such as high CO2 selectivity and high specific surface area, which are novel agents to capture CO2 with broad application prospects. In this review, more than 140 IL-modified adsorbents for CO2 capture in recent years were systematically summarized. The types of ILs including conventional ILs and functionalized ILs on CO2 separation performance of different IL hybrid adsorbents, and their adsorption mechanisms were also discussed. Finally, future perspectives on IL-modified adsorbents for CO2 separation were further posed.  相似文献   

19.
This study is focused on the development of ionic liquids (ILs) based polymeric membranes for the separation of carbon dioxide (CO2) from methane (CH4). The advantage of ILs in selective CO2 absorption is that it enhances the CO2 selective separation for the ionic liquid membranes (ILMs). ILMs are developed and characterized with two different ILs using the solution‐casting method. Three different blend compositions of ILs and polysulfone (PSF) are selected for each ILMs 10, 20, and 30 wt %. Effect of the different types of ILs such as triethanolamine formate (TEAF) and triethanolamine acetate (TEAA) are investigated on PSF‐based ILMs. Field emission scanning electron microscopy analysis of the membranes showed reasonable homogeneity between the ILs and PSF. Thermogravimetric analysis showed that by increasing the ILs loading thermal stability of the membranes improved. Mechanical analysis on developed membranes showed that ILs phase reduced the amount of plastic flow of the PSF phase and therefore, fracture takes place at gradually lower strains with increasing ILs content. Gas permeation evaluation was carried out on the developed membranes for CO2/CH4 separation between 2 bar to 10 bar feed pressure. Results showed that CO2 permeance increases with the addition of ILs 10–30 wt % in ILMs. With 20–30 wt % TEAF‐ILMs and TEAA‐ILMs, the highest selectivity of a CO2/CH4 53.96 ± 0.3, 37.64 ± 0.2 and CO2 permeance 69.5 ± 0.6, 55.21 ± 0.3 is observed for treated membrane at 2–10 bar. The selectivity using mixed gas test at various CO2/CH4 compositions shows consistent results with the ideal gas selectivity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45395.  相似文献   

20.
烟道气中酸性气体的捕集非常重要.近年来,支撑型离子液体膜(Supported ionic liquid membranes,SILMs)因传质速率高、稳定性好等特点而广泛应用于酸性气体的捕集研究.主要综述了利用离子液体作为膜液相来制备支撑液膜的方法,分析了捕集机理,讨论了离子液体阴阳离子结构、支撑体材料性能、原料气中水蒸汽、操作温度及跨膜压差等因素对支撑型离子液体膜渗透性及稳定性的影响,叙述了目前提高稳定性的一些方法,并在此基础上提出了支撑型离子液体膜用于酸性气体捕集需要解决的问题和工业化前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号