首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
《应用化工》2017,(2):265-269
研究了矿物改性氯氧镁水泥前期水化行为,绘制了各矿物掺合料氯氧镁水泥水化电阻率-时间曲线,测试终凝时间以及1 d抗弯与抗压强度。结果表明,矿物掺合料能够延缓氯氧镁水泥水化速度,并随着矿物掺合料掺量的提高,其水化速度逐渐变慢。同等掺量下硅灰延缓反应时间的作用最为明显,其次是石粉与粉煤灰。硅灰的掺入延缓氯氧镁水泥水化速度,大幅度提高其初终凝时间,降低早期强度,其掺量不宜超过20%。粉煤灰与石粉氯氧镁水泥初终凝时间均在规范要求以内,对早期抗弯拉强度与抗压强度影响幅度相对较小。添加粉煤灰与石粉试样晶体较掺硅灰试样结晶程度更高。  相似文献   

2.
氯氧镁水泥具有放热量大、放热集中的特点.为了改善由放热量大引起的制品开裂、变形等缺点,本文采用水化热法,研究了内掺粉煤灰、硅灰和矿渣3种矿物掺合料对氯氧镁水泥水化历程的影响规律.研究结果表明,三者均能影响氯氧镁水泥的水化历程,延长水化时间,降低放热速率和总放热量,但三者影响效果不尽一致.当掺量为10%时,粉煤灰、硅灰和矿渣分别使镁水泥的诱导期延长了2%、6%和13%,第二最大放热速率分别降低了6%、16%和7%,3d水化放热量分别降低了9%、14%和6%;当掺量为30%时,粉煤灰和矿渣分别使镁水泥的诱导期延长了24%和45%,第二最大放热速率分别降低了29%和32%,3d水化放热量分别降低了27%和29%;三者对氯氧镁水泥水化历程的影响差异,与其矿物组成、比表面积、颗粒级配和形状等性质有关.实验结果为进一步寻找控制和改善氯氧镁水泥性能的合适外加剂提供了可靠的依据.  相似文献   

3.
掺入矿物掺合料是改善硫铝酸盐水泥(CSA)混凝土凝结硬化性能和降低生产成本的主要技术途径之一。研究了水胶比为0.4时,单掺超细矿渣粉(UFS)、偏高岭土(MK)与复掺超细矿渣粉、偏高岭土对硫铝酸盐水泥凝结时间、流动度、电阻率、抗压强度的影响,并对其1 d、28 d龄期时的水化产物进行XRD半定量分析。结果表明,单掺和复掺缩短了水泥浆体的凝结时间,但单掺偏高岭土时的缩短效果更明显,且水泥浆体的流动度随着超细矿渣粉和偏高岭土掺量的增加而减小。掺入超细矿渣粉、偏高岭土缩短了水泥浆体电阻率变化速率曲线峰值出现的时间,峰值大小与掺量成递减关系。当掺量从0%(质量分数,下同)增大到20%时,单掺超细矿渣粉试样的28 d抗压强度减小了24.7%,单掺偏高岭土试样的28 d抗压强度减小了17.7%,两者复掺试样的28 d抗压强度减小了17.3%。超细矿渣粉和偏高岭土对水泥水化产物没有明显影响,但促进了硅酸二钙(β-C2S)的早期水化。  相似文献   

4.
为了拓宽氯氧镁水泥(MOC)在建筑、道路等行业的应用,向MOC中掺入柠檬酸,分析了柠檬酸对MOC抗压强度、耐硫酸盐侵蚀性、耐水性、相组成、热稳定性、凝结时间和微观形貌的影响。结果表明:MOC中掺入柠檬酸提高了水化产物5相含量和耐水性;降低了MOC的抗压强度、热稳定性及总孔隙率;延长了MOC的凝结时间。此外,掺入柠檬酸的MOC浸泡在硫酸钠溶液28 d后提高了MOC的耐水性,MOC强度保留系数达到0.8。  相似文献   

5.
为了改善镁质胶凝材料的性能,结合硫氧镁水泥和氯氧镁水泥两个体系的特性,制备了硫、氯氧镁混合胶凝体系.通过测试凝结时间、抗压和抗折强度对混合体系的凝结硬化性能及耐水性进行了研究,利用XRD、SEM和EDS分析表征手段对混合体系水化产物的物相组成、元素分布及微观形貌进行了分析.结果表明:溶液中氯化镁质量分数增加,浆体的凝结时间延长,当氯化镁质量分数大于70%,凝结时间缩短.与硫氧镁水泥和氯氧镁水泥相比,混合体系的抗压强度降低、抗折强度稍有增加,浸泡28d后表现出了良好的耐水性.XRD和SEM数据表明:晶体之间没有形成连结力强的连续结构,使混合体系的力学性能降低.浸水后水化产物微观形貌的改变是混合体系耐水性增加的主要原因.  相似文献   

6.
本文探究了两种有机膦酸对硫氧镁水泥抗压强度、耐水性能和凝结时间的影响,通过X射线衍射、同步热分析和扫描电子显微镜测试对硫氧镁水泥的物相组成及微观形貌进行表征和分析。结果表明:当氨基三亚甲基膦酸(ATMP)掺量在0.75%(质量分数,下同)时,相较空白组28 d抗压强度增加了113.99%,软化系数增加了101.86%;羟基乙叉二膦酸(HEDP)掺量为0.75%时,硫氧镁水泥表现出最佳机械强度及较高的缓凝效果,且软化系数达到0.93;两种有机膦酸进行复配(总掺量为0.75%),当m(ATMP)∶m(HEDP)为3∶1时,对硫氧镁水泥具有最佳改性效果。有机膦酸能与MgO水化过程中产生的[Mg(OH)(H2O)x]+形成稳定的螯合物,减缓活性MgO水解为Mg(OH)2的进程,从而延缓硫氧镁水泥的凝结时间,为硫氧镁水泥在实际工程中的应用提供了可行性。  相似文献   

7.
磷酸钾镁水泥(MKPC)的速凝特性限制了其在更多工程领域的应用发展,有效延长凝结时间是其工程化应用的关键技术之一。本研究使用硼砂/三乙醇胺复合缓凝剂,深入研究了其对磷酸钾镁水泥凝结时间、抗压强度、物相组成、微观形貌、孔结构和水化放热等特性的影响,并探讨了缓凝机理。结果表明:在保障7 d抗压强度大于20 MPa条件下,复合缓凝剂的使用,可实现26~100 min的凝结时间调控;三乙醇胺分子包覆MgO颗粒,发挥阻水作用,从而显著降低水化反应的标准水化放热速率与标准水化放热量,达到缓凝效果;试样中K-鸟粪石含量的减少与大于10 nm孔隙体积的增加是削弱抗压强度的主要原因。  相似文献   

8.
为了深入研究氯氧镁水泥低温凝结机理,进而改善和提高氯氧镁水泥在低温时的快硬性能,把氧化钙加入到氯氧镁水泥料浆中,通过搅拌、成型、恒温恒湿箱养护后测定其凝结时间及早期强度。结果表明:氧化钙加入后放出热量,引发氯氧镁水泥水化起始期反应的进行,有效缩短氯氧镁水泥的凝结时间。当氧化钙掺量为氧化镁质量的4%时,氧化镁活性为62.24%和72.01%时初凝时间分别由593 min缩短到146 min、由570 min缩短到126 min,终凝时间分别由673 min缩短到374 min、由641 min缩短到260 min,同时都提高了氯氧镁水泥的低温早期强度。  相似文献   

9.
研究了半干法脱硫灰对水泥凝结时间、水化放热速率和强度的影响。结果表明:半干法脱硫灰对水泥凝结时间有延长作用。当半干法脱硫灰掺量低于水泥用量的4%时,水泥的凝结时间随其掺量的增加而逐渐延长;反之,当半干法脱硫灰掺量高于水泥用量的4%时,水泥的凝结时间随其掺量的增加相对会变短;随着半干法脱硫灰掺量的增加,水泥的诱导期均不同程度得到延长。当其掺量高于4%时,会降低水泥水化放热速率;水泥的强度会随着半干法脱硫灰掺量的增加而逐渐降低。  相似文献   

10.
测定了不同水泥的水化放热和电阻率变化,并做了电阻率变化率和放热速率的对比分析.研究发现:水泥水化1 d的电阻率随累计放热量的增加而增加;电阻率与放热速率随水化时间的变化均能独立地反映水泥水化进程;且水泥水化放热速率曲线的一些特征峰,如:溶解热峰、主教热峰,钙钒石转化峰等,在一定时间偏差范围内,均可在电阻率变化曲线上找到与之对应的突变点.水泥水化放热速率在诱导期达到极小值后先快速增长,再慢速增长,存在转折点,且电阻率变化率有相应峰值与其对应.  相似文献   

11.
《Ceramics International》2021,47(24):34341-34351
This study investigates the effects of fly ash, phosphoric acid, nano-silica additives on the hydration process, setting time, compressive strength, water resistance, and thermal stability of magnesium oxychloride cement (MOC). MOC samples incorporating different combinations of additives are prepared, and their hydration products and microstructures are studied via X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TGA-DSC), and scanning electron microscopy (SEM). Results indicate that the addition of nano-silica to MOC containing fly ash and phosphoric acid reduces initial and final setting times, decreases the thermal stability, and increases compressive strength. Furthermore, the water resistance of modified MOC pastes is significantly improved through the combined use of additives. Hydration mechanisms arising in MOC are elucidated, and the remarkable enhancement of water resistance is attributed to secondary hydration of the 5 Mg(OH)2·MgCl2·8H2O (5·1·8 phase) and the formation of amorphous gel facilitated by nano-silica inclusion.  相似文献   

12.
通过凝结时间、抗压强度、电阻率、浆体内部温度测试和水化产物分析,研究了20 ℃、35 ℃和50 ℃下矿渣(GGBFS)对铝酸盐水泥(CAC)早期水化行为的影响。结果表明,掺入矿渣会逐渐减小CAC 72 h的化学收缩,降低化学收缩速率峰值。20 ℃时,电阻率变化曲线出现了明显的晶相转变期,化学收缩曲线存在明显的诱导期; 35 ℃时,凝结时间延长,掺入矿渣抑制了电阻率的发展;50 ℃时,电阻率在接近24 h时显著降低,凝结时间显著缩短,掺入矿渣缓解了24 h电阻率的减小。矿渣-铝酸盐水泥体系的水化产物和抗压强度受养护温度的影响较大。20 ℃时,掺入40%(质量分数)矿渣减少了CAH10的生成量,降低了硬化浆体的强度;35 ℃和50 ℃时,1 d水化产物主要为C2AH8和少量C3AH6,掺入矿渣延缓了强度的倒缩。在28 d龄期时,不同养护温度下掺入矿渣均能促进C2ASH8的生成。  相似文献   

13.
李豪  廖宜顺  邓芳  马丰  董兴智 《硅酸盐通报》2022,41(12):4353-4360
本文采用不同掺量的磷建筑石膏(CPG)、粒化高炉矿渣和熟石灰制备超硫酸盐水泥(SSC),通过测试水泥浆体的水化热、电阻率、化学收缩、水化产物、孔溶液pH值和抗压强度的变化规律,研究了CPG掺量对SSC水化性能的影响规律。结果表明:当CPG掺量从0%(质量分数,下同)增大到20%时,水泥浆体的第三放热峰出现时间延迟,3 d放热量与14 d化学收缩均增大,3 d电阻率减小,28 d孔溶液pH值从11.95减小到10.80;掺入CPG会促进钙矾石的生成;当CPG掺量为10%时,试件的28 d抗压强度最大,达到23.8 MPa。  相似文献   

14.
采用等温量热法,研究了酒石酸和硼酸这2种缓凝剂对掺氧化钙型膨胀剂与氧化钙-硫铝酸钙复合型膨胀剂的水泥净浆的诱导期结束时间、主放热峰出现时间及其最大放热速率、不同时间累计放热量等方面的影响.结果表明:与掺膨胀剂水泥净浆相比,缓凝剂均明显推迟补偿收缩胶凝材料体系的诱导期结束时间和主放热峰出现时间,减少最大放热速率和24 h内累计水化热,72 h总水化热略低.对氧化钙型膨胀剂水泥体系,硼酸比酒石酸缓凝效果好.  相似文献   

15.
氯氧镁水泥(MOC)具有轻质、高强、耐磨等优势,但耐水性差制约了其在建筑行业的发展。为制备高耐水性MOC,以天然沸石粉(NZOP)为掺合料,分析了天然沸石粉对MOC凝结时间、抗压强度、耐水性的影响。同时,利用X射线衍射仪、扫描电镜、压汞仪分析了改性后MOC的相组成、微观形貌和孔结构的变化。此外,利用离子色谱仪检测了MOC浸水后溶液中的Cl-浓度。结果表明,合适掺量的天然沸石粉可以有效提高MOC的抗压强度和耐水性,缩短MOC的凝结时间。掺入30%(质量分数)天然沸石粉和0.5%(质量分数)磷酸后,MOC的28 d抗压强度和浸水28 d软化系数分别可达75.8 MPa和0.91,氯离子浓度低至9.0 mmol/L。此外,溶液中Cl-浓度随着MOC软化系数的降低而提高。  相似文献   

16.
为了改善氯氧镁水泥(MOC)的耐水性,资源化利用固废提钛尾渣,向MOC中掺入提钛尾渣,利用维卡仪、万能试验机、离子色谱仪、X射线衍射仪、扫描电镜、压汞仪等检测设备分析了提钛尾渣对MOC凝结时间、抗压强度、氯离子溶出率、相组成、微观形貌和孔结构的影响。结果表明:未处理的提钛尾渣提高了MOC的总孔隙率和有害大气孔(直径>100 nm)含量,降低了MOC的抗压强度和耐水性。经磨细工艺处理后的提钛尾渣改善了MOC体系中氧化镁颗粒的分散性,促进了5Mg(OH)2·MgCl2·8H2O生长发育,降低了MOC的总孔隙率,提高了MOC的抗压强度和耐水性。MOC中掺入20%(轻烧粉质量计)经磨细工艺处理后的提钛尾渣后,其28 d抗压强度和浸水28 d的强度保留系数最高,分别可达102.4 MPa和0.88,浸泡液中氯离子浓度可低至11.2 mmol/L。  相似文献   

17.
为了拓展氯氧镁水泥(MOC)材料的应用领域,以盐湖提钾肥副产物水氯镁石、轻烧氧化镁和粉煤灰为胶凝材料,制备了不同粉煤灰掺量的氯氧镁水泥混凝土(MOCC)。研究了粉煤灰掺量对MOCC抗压强度、物相组成、微观形貌和孔结构的影响。结果表明:随着粉煤灰掺量的增加,MOCC的抗压强度逐渐降低,当粉煤灰掺量为40%(质量分数)时,其300 d抗压强度降低至39.99 MPa,降低了22.52%。MOCC的主要水化产物为5Mg(OH)2·MgCl2·8H2O(5·1·8)和Mg(OH)2,掺加粉煤灰并没有产生新的晶相。掺入粉煤灰增加了MOCC的孔隙率和有害孔体积,从而降低了其抗压强度。采用相同水灰比制备了普通硅酸盐水泥混凝土,抗压强度对比测试结果表明:掺40%的粉煤灰MOCC的抗压强度虽然比未掺粉煤灰MOCC抗压强度低,但仍比普通硅酸盐水泥混凝土300 d龄期的抗压强度(33.42 MPa)高出19.66%,说明MOCC比普通硅酸盐水泥混凝土具有较高的抗压强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号