首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
制备以SiO_2-Al_2O_3为载体、W为活性组分的加氢精制W/SiO_2-Al_2O_3催化剂,并考察了温度、氢压、氢油体积比和空速的影响。研究了在W/SiO_2-Al_2O_3催化剂作用下,润滑油基础油的加氢精制效果。结果表明,在精制温度260℃、氢压9.0 MPa、氢油体积比700:1和空速1.25 h^(-1)条件下,氮含量从63.4μg·g^(-1)降至0.9 μg·g^(-1),硫含量从110.2μg·g^(-1)降至0.32 μg·g^(-1),液体油收率92.7%,运动黏度、闪点、凝点与原料油相比变化不大,加氢精制效果较理想。  相似文献   

2.
采用浸渍法制备了NiMoW/γ-Al_2O_3催化剂,以菜籽油为原料,在100mL固定床加氢装置上,考察了不同工艺条件对菜籽油加氢脱氧的影响。结果表明,提高反应温度,有利于加氢脱羧基(羰基)反应,不利于直接加氢脱氧反应;升高氢分压有利于直接加氢脱氧反应,不利于加氢脱羰基(羧基)反应;低液时空速有利于加氢脱羰(脱羧)反应的发生,高液时空速有利于直接加氢脱氧反应的发生;提高氢油比,对直接加氢脱氧反应的促进作用要大于脱羧(脱羰)反应。  相似文献   

3.
采用机械混捏-高温焙烧技术制备Ni-Pt/γ-Al_2O_3-SiO_2催化剂,用于高粘度润滑油加氢精制,考察了催化剂的制备条件以及催化加氢精制的反应条件对产品油性能的影响。结果表明,催化剂载体与镍、铂的质量比100∶1∶1,焙烧温度850℃,焙烧时间4 h时,催化剂性能最佳;加氢精制的最佳工艺条件为:反应温度240℃,反应压力9.0 MPa,氢油比1 100∶1,体积空速0.9 h~(-1)。此时,所得产品油的凝点-46℃,与原料油相比,各方面性能均有所提升。催化剂最佳再生温度是660℃。  相似文献   

4.
《应用化工》2022,(3):530-533
采用机械混捏-高温焙烧技术制备Ni-Pt/γ-Al_2O_3-SiO_2催化剂,用于高粘度润滑油加氢精制,考察了催化剂的制备条件以及催化加氢精制的反应条件对产品油性能的影响。结果表明,催化剂载体与镍、铂的质量比100∶1∶1,焙烧温度850℃,焙烧时间4 h时,催化剂性能最佳;加氢精制的最佳工艺条件为:反应温度240℃,反应压力9.0 MPa,氢油比1 100∶1,体积空速0.9 h(-1)。此时,所得产品油的凝点-46℃,与原料油相比,各方面性能均有所提升。催化剂最佳再生温度是660℃。  相似文献   

5.
采用SSY型分子筛、不同硅铝比Beta分子筛与大孔氢氧化铝干胶混捏制备SSY-Beta-Al_2O_3载体,等体积浸渍法制备Ni-W/SSY-Beta-Al_2O_3加氢转化催化剂,采用BET、Py-IR、XRD、NH_3-TPD对制备的催化剂及载体进行表征。在100 mL固定床加氢装置上,工业Ni-Mo型柴油加氢精制催化剂与Ni-W/SSY-Beta-Al_2O_3加氢转化催化剂级配装填,以劣质催化裂化柴油为原料,对加氢转化催化剂进行活性评价。结果表明,随着Beta分子筛硅铝比的增加,催化剂表面的L酸中心先减少后增多,B酸中心先增加后减少,催化剂的弱酸酸量先增多后减少,中强酸与强酸酸量变化不明显。在氢油体积比700∶1、反应压力8.0 MPa、精制段反应温度360℃,体积空速1.25 h^(-1),转化段反应温度400℃,体积空速1.35 h^(-1)的条件下,CYB-3催化剂加氢转化产品液相收率高达97.73%,汽油馏分收率63.72%,辛烷值91.66,柴油馏分收率33.69%,十六烷值比原料提高8.96,凝点小于-35℃。  相似文献   

6.
以γ-Al_2O_3为载体,Ni(NO_3)_2和Ce(NO_3)_3为浸渍液,以不同顺序添加浸渍液制备一组负载型催化剂,采用比表面积分析(BET)、X射线衍射(XRD)、H_2程序升温还原(H2-TPR)等表征手段分析不同浸渍顺序对催化剂结构和性质的影响,并采用固定床反应器考察了催化剂对粗己内酰胺加氢精制反应的影响。结果表明:采用分步浸渍法,载体γ-Al_2O_3依次浸渍在Ce(NO_3)_3和Ni(NO_3)_2溶液中制备的NiO/CeO_2/γ-Al_2O_3催化剂具有较好的催化活性和稳定性,在温度90℃,压力0.8 MPa,空速0.8 h-1,氢液比75的反应条件下,其粗己内酰胺加氢精制产物高锰酸钾值(PM值)能够稳定在22 000 s。  相似文献   

7.
以γ-Al_2O_3为载体,采用等体积分步浸渍法制备了以Ni为活性组分,La、Ce、Fe、Cr、Co为助剂的催化剂M/γ-Al_2O_3,在固定床管式反应器中研究了M/γ-Al_2O_3催化剂的性能,考察了反应温度、水碳比和空速对氢产率的影响,并对催化剂进行XRD、SEM和BET表征。结果表明,NiLaCeFeCrCo/γ-Al_2O_3催化剂具有较好的催化性能,在反应温度700℃、水碳物质的量比10和空速6min-1的条件下,氢产率达到27.335mol·mol-1,并在300min内表现出较好的活性,平均氢产率为21.966mol·mol-1。  相似文献   

8.
采用Mo-Ni-P/γ-Al2O3加氢催化剂, 对中粘度的聚α-烯烃合成基础油进行加氢精制, 精制前对加氢催化剂进行合理的预硫化。研究了加氢精制的工艺条件, 考察了反应温度、氢压、体积空速和氢油比对聚α-烯烃合成基础油加氢效果的影响, 确定了最佳的加氢精制工艺。结果表明,对于该实验原料和催化剂,采用反应温度280 ℃、氢压6.0 MPa、空速0.5 h-1和氢油体积比800∶1的工艺条件,加氢效果非常理想, 溴值由1.4 g-Br·(100 g油)-1降至0.22 g-Br·(100 g油)-1、残炭由0.105%降至0.012%、硫含量由0.9 μg·g-1降至0.4 μg·g-1、比色由2.5降至<0.5, 聚α-烯烃合成基础油的性能有了较大提高。  相似文献   

9.
采用等体积浸渍法制备不同镍质量分数的Ni/γ-Al_2O_3催化剂,利用XRD、SEM、BET、H_2-TPR和NH_3-TPD等对其进行一系列表征,评价其催化邻苯二甲酸二异壬酯的加氢性能,30%Ni/γ-Al_2O_3表现出优异的催化活性。同时,考察了Ni/γ-Al_2O_3催化剂的焙烧温度和还原温度对邻苯二甲酸二异壬酯加氢的性能影响,结果表明,在催化剂焙烧温度为500℃、还原温度为450℃的最佳条件下,环己烷-1,2-二甲酸二异壬酯的收率为85.74%。对邻苯二甲酸二异壬酯的加氢工艺进行优化,在温度为160℃、压力为7 MPa、空速为0.25 h~(-1)和氢油比为1 500∶1的条件下,邻苯二甲酸二异壬酯加氢效果最佳,反应的收率高达93.53%。  相似文献   

10.
工业Ni-Mo/Al2O3催化剂上异戊二烯选择性加氢宏观动力学   总被引:2,自引:1,他引:1  
在固定床积分反应器中研究了异戊二烯在工业Ni-Mo/Al2O3催化剂上选择性加氢的宏观动力学.以异戊二烯+正辛烷为模拟原料,在温度70~120℃,压力0.5~2.0 MPa,氢油体积比20~40,液时空速2~36h-1条件下,考察了温度、反应压力、液时空速、氢油比等对二烯烃选择性加氢反应的影响;采用幂函数动力学模型拟合...  相似文献   

11.
利用固定床加氢反应装置,以Mo-Ni/Al_2O_3为催化剂,首次对ATP页岩干馏装置油回收系统得到的页岩重油,经脱水脱渣预处理后切割分离所得的页岩柴油馏分进行加氢精制研究,考查了反应温度、反应压力、体积空速以及氢油体积比对加氢精制效果的影响。结果表明,在320~380℃、4.0~8.0 MPa、LHSV 0.5~2.0 h~(-1)、V(H_2)/V(Oil)200~1 200的范围内,提高反应温度,增大反应压力,降低体积空速,有利于ATP页岩柴油馏分的脱硫、脱氮和烯烃饱和,可明显提高加氢脱氮效果,氢油比高于1 000之后,增加氢油比对加氢脱硫和脱氮影响较小;抚矿ATP页岩柴油馏分在反应温度380℃、反应压力8.0 MPa、体积空速0.5 h~(-1)、氢油体积比1 000的条件下,加氢精制后所得产物油的杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

12.
采用过量浸渍法,以γ-Al_2O_3为载体,Ni为活性组分,Li为助剂,制备Ni-Li/γ-Al_2O_3催化剂。考察了催化剂床层温度、水醇比、丙三醇液空速及夹带气流量对丙三醇水重整制氢工艺条件的影响,并对催化剂进行了BET、XRD及SEM表征手段。结果表明,当反应温度600℃、液空速0.36 h~(-1)、水醇比56时,氢产率可达5.066 mol/mol,说明Ni-Li/γ-Al_2O_3催化剂适用于丙三醇重整制氢工艺。  相似文献   

13.
在连续流动固定床加氢装置上,采用Ni W-P/Al_2O_3催化剂对高温煤焦油脱除大部分S、N、O后经蒸馏切割得到的芳烃质量分数较高的柴油馏分进行加氢精制,考察了反应温度、反应压力、液体体积空速和氢油体积比对芳烃脱除率和产物分布的影响,得到的最佳工艺条件为:反应温度为340℃,反应压力为8.0 MPa,液体体积空速为0.3 h~(-1),氢油体积比为1 500。结果表明,适宜的反应温度和氢油体积比、较高的反应压力和较低的液体体积空速有利于柴油馏分中芳烃的脱除,其脱除率达到70%以上。  相似文献   

14.
实验以废塑料油为原料,在Zr/γ-Al2O3-HY催化剂的作用下进行加氢精制反应,探究了反应温度、压力、空速以及氢油比等因素对加氢精制效果的影响。实验表明,加氢精制效果最佳条件为:反应温度为210℃、反应压力为6.0 MPa、空速0.5 h-1以及氢油比为800:1。柴油收率为83.0%。加氢后得到的柴油凝点为-12℃,色度为1.0,闪点为54.2,十六烷值为53.7。  相似文献   

15.
采用等体积分步浸渍法以Cu为活性组分,ZnO为助剂,Al_(2)O_(3)为载体,制备Cu-ZnO/γ-Al_(2)O_(3)催化剂,并将Cu-ZnO/γ-Al_(2)O_(3)催化剂与工业催化剂B205联合应用于甲醇水蒸气重整制氢工艺,考察反应床层温度、液空速和水醇比对氢产率的影响,并利用XRD及TPR对催化剂的结构、还原温度进行表征。结果表明,联合使用Cu-ZnO/γ-Al_(2)O_(3)与B205制氢催化剂对甲醇水蒸气重整制氢表现出较好的稳定性,在反应床层温度245℃、液空速0.36 h-1和水醇物质的量比4.0条件下,氢产率为2.5216 mol·mol^(-1)。  相似文献   

16.
以NiCl_2、Cu(NO_3)_2、Ce(NO_3)_3为原料,采用等体积浸渍法和KBH4还原法制备Ni-Cu-Ce-B/γ-Al_2O_3催化剂,研究了其催化苯酚选择性加氢制备环己酮的反应性能。考察了反应温度、反应压力、反应时间、液时空速、氢气/苯酚体积比、催化剂用量、不同助剂对反应活性和选择性的影响,通过正交实验筛选出了最佳的反应条件。结果表明,在反应温度为150℃、反应压力为1.0 MPa、反应时间为1.5 h、液时空速为2.0 h~(-1)、氢气/苯酚体积比为50/1时,反应活性达48.21%,反应选择性达29.16%。助剂Cu、Ce的加入和催化剂显碱性都有利于生成环己酮。  相似文献   

17.
通过等体积浸渍法制备了Zr改性的Ni-Mo/Zr-ASA加氢催化剂,在固定床上以萘作为反应探针,研究了萘加氢反应,优化了萘加氢工艺。实验结果表明,催化剂Ni-Mo/Zr-ASA上萘加氢的最佳工艺条件为:反应温度380℃,反应压力6.5MPa,空速1.5h-1,氢油体积比300∶1。  相似文献   

18.
采用固定床反应器,对催化裂解柴油(DCC)在NiMoP/Al2O3催化剂上进行选择性加氢,研究NH3浓度、反应温度、液时空速和二段加氢的反应结果。结果表明,一段加氢,在NH3浓度为5%时,温度360℃,反应压力为6.4 MPa,空速2.0 h-1,氢油比600时,多环芳烃饱和率为88.26%,单环芳烃选择性为93.17%;二段加氢,在第2反应器温度为360℃,反应压力为6.4 MPa,体积空速为2.0 h-1,氢油比600时,多环芳烃饱和率达到最高97.21%。  相似文献   

19.
分别以Ni(NO_3)_2·6H_2O和γ-Al_2O_3为二价和三价阳离子源,采用尿素水解法在γ-Al_2O_3载体上合成Ni-Al-LDH水滑石结构,并对其进行了XRD和FT-IR表征。以此为前驱体通过高温焙烧制得Ni-Al-LDH/γ-Al_2O_3催化剂。与等体积法制备的Ni/γ-Al_2O_3催化剂相比,Ni-Al-LDH/γ-Al_2O_3催化剂在甲烷干重整中不仅具有更高的催化活性,而且能够在一定程度上抑制逆水煤气反应。在反应温度为800℃,空速为48L·g~(-1)·h~(-1)的条件下,反应20h未失活,Ni-Al-LDH/γ-Al_2O_3催化剂上甲烷和二氧化碳转化率较Ni/γ-Al_2O_3催化剂约高8%。  相似文献   

20.
中低温煤焦油加氢改质工艺研究   总被引:6,自引:0,他引:6  
在小型固定床加氢装置上,用加氢精制催化剂和加氢裂化催化剂对陕北的中低温煤焦油进行加氢改质工艺研究.着重考察反应温度、反应压力、氢油体积比和液体体积空速对加氢效果的影响,得到了优化的工艺条件:反应压力14 MPa,反应温度390℃,氢油体积比1 600:1,液体体积空速0.25 h-1.加氢改质产品切割得到汽油、柴油和尾油馏分,分别占产物质量的9.82%,73.12%和16.43%.汽柴油馏分经过简单处理后可以得到合格的产品,加氢尾油可以作为优质的催化裂化或加氢裂化原料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号