首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Transport properties of p-Ga1?xInxAsySb1?y/p-InAs:Mn heterostructures with undoped layers of solid solutions similar in composition to GaSb (x?0.22) grown by liquid-phase epitaxy on substrates with a Mn concentration of (5–7)×1018 cm?3 are studied. It is ascertained that there is an electron channel at the interface (from the InAs side). The anomalous Hall effect and negative magnetoresistance are observed at relatively high temperatures (77–200) K. These phenomena can be attributed to the s-d-exchange interaction between Mn ions of the substrate and s electrons of the two-dimensional channel. The effective magnetic moment of Mn ions was evaluated as μ=200µB at T=77 K.  相似文献   

2.
The effective mobility of electrons μ* in the inversion n-type channel of a field-effect transistor increases appreciably (as a result of space-charge ion polarization of the gate oxide) from the typical values of ?820 cm2 V?1 s?1 to the values of ?2645 cm2 V?1 s?1, which exceed the electron mobility in bulk silicon. After polarization, the sheet concentration of Na+ ions at the SiO2/Si interface exceeds 6 × 1013 cm?2. The ions are almost completely neutralized by electrons in the inversion channel. As temperature T is decreased in the range from 293 to 203 K, μ* increases according to the law μ* ∝ T ?0.82. Apparently, the observed dependence μ*(T) is caused by the combined scattering of electrons by roughness of the Si/SiO2 interface surface, phonons, and the interface states. Depolarization of the oxide reverts μ* to the initial value. Anomalously large values of μ* are assumed to be either a consequence of the origination of pronounced structural stresses in the surface Si layer due to the oxide polarization or a result of a phase reconstruction of the inversion-channel region due to hybridization of the wave functions of electrons localized at the Na+ ions with the wave functions of electrons in the inversion channel.  相似文献   

3.
The effect of annealing in argon at temperatures of Tan = 700–900°C on the IV characteristics of metal–Ga2O3–GaAs structures is investigated. Samples are prepared by the thermal deposition of Ga2O3 powder onto GaAs wafers with a donor concentration of N d = 2 × 1016 cm–3. To measure theIV characteristics, V/Ni metal electrodes are deposited: the upper electrode (gate) is formed on the Ga2O3 film through masks with an area of S k = 1.04 × 10–2 cm2 and the lower electrode in the form of a continuous metallic film is deposited onto GaAs. After annealing in argon at Tan ≥ 700°C, the Ga2O3-n-GaAs structures acquire the properties of isotype n-heterojunctions. It is demonstrated that the conductivity of the structures at positive gate potentials is determined by the thermionic emission from GaAs to Ga2O3. Under negative biases, current growth with an increase in the voltage and temperature is caused by field-assisted thermal emission in gallium arsenide. In the range of high electric fields, electron phonon-assisted tunneling through the top of the potential barrier is dominant. High-temperature annealing does not change the electron density in the oxide film, but affects the energy density of surface states at the GaAs–Ga2O3 interface.  相似文献   

4.
The results of an experimental study of the capacitance–voltage (CV) characteristics and deep-level transient spectroscopy (DLTS) spectra of p+p0in0 homostructures based on undoped dislocationfree GaAs layers and InGaAs/GaAs and GaAsSb/GaAs heterostructures with homogeneous networks of misfit dislocations, all grown by liquid-phase epitaxy (LPE), are presented. Deep-level acceptor defects identified as HL2 and HL5 are found in the epitaxial p0 and n0 layers of the GaAs-based structure. The electron and hole dislocation-related deep levels, designated as, respectively, ED1 and HD3, are detected in InGaAs/GaAs and GaAsSb/GaAs heterostructures. The following hole trap parameters: thermal activation energies (E t ), capture cross sections (σ p ), and concentrations (N t ) are calculated from the Arrhenius dependences to be E t = 845 meV, σ p = 1.33 × 10–12 cm2, N t = 3.80 × 1014 cm–3 for InGaAs/GaAs and E t = 848 meV, σ p = 2.73 × 10–12 cm2, N t = 2.40 × 1014 cm–3 for GaAsSb/GaAs heterostructures. The concentration relaxation times of nonequilibrium carriers are estimated for the case in which dislocation-related deep acceptor traps are involved in this process. These are 2 × 10–10 s and 1.5 × 10–10 s for, respectively, the InGaAs/GaAs and GaAsSb/GaAs heterostructures and 1.6 × 10–6 s for the GaAs homostructures.  相似文献   

5.
The results devoted to the development of a method for creating an RF transistor, in which a T-shaped gate is formed by nanoimprint lithography, are presented. The characteristics of GaAs p-HEMT transistors have been studied. The developed transistor has a gate “foot” length of the order of 250 nm and a maximum transconductance of more than 350 mS/mm. The maximum frequency of current amplification f t is 40 GHz at the drain-source voltage V DS = 1.4 V and the maximum frequency of the power gain f max is 50 GHz at V DS = 3 V.  相似文献   

6.
The dependence of the photoluminescence spectrum of electron-hole plasma in semi-insulating undoped GaAs on the concentration of the background carbon impurity NC(3×1015 cm?3NC≤4×1016 cm?3) is studied at 77 K. It is established that the density of the electron-hole plasma, which is equal to n e?h ≈1.1×1016 cm?3 in crystals with the lowest impurity concentration at an excitation intensity of 6×1022 photons/(cm2 s), decreases considerably as the value of NC increases in the range mentioned above. A decrease in the density of the electron-hole plasma with increasing NC is attributed to the effect of fluctuations in the carbon concentration NC, which give rise to a nonuniform distribution of interacting charge carriers and to localization of holes in the tails of the density of states of the valence band.  相似文献   

7.
The effect of oxygen on diffusion of sodium implanted into silicon is studied for the first time in the temperature range from 500 to 850°C. A high-resistivity p-Si (ρ > 1 kΩ cm) grown by the Czochralski method in a magnetic field (mCz) with the oxygen concentration ~3 × 1017 cm?3 was used. For comparison, we used silicon grown by the crucibleless floating zone method (fz). Temperature dependences of the effective diffusion coefficient of sodium in the mCz-Si and fz-Si crystals were determined and written as D mCz[cm2/s] = 1.12exp(?1.64 eV/kT) cm2/s and D fz[cm2/s] = 0.024exp(?1.29 eV/kT) cm2/s, respectively. It is assumed that larger values of diffusion parameters in oxygen-containing silicon are caused by formation of complex aggregates that contain sodium and oxygen atoms.  相似文献   

8.
Effective electron mobility μeff in channels of metal-oxide-semiconductor transistors with a gate length L in the range of 3.8 to 0.34 μm was measured; the transistors were formed on wafers of the silicon-oninsulator type. It was found that μeff decreases as L is decreased. It is shown that this decrease can be accounted for by the effect of series resistances of the source and drain only if it is assumed that there is a rapid increase in these resistances as the gate voltage is decreased. This assumption is difficult to substantiate. A more realistic model is suggested; this model accounts for the observed decrease in μeff as L is decreased. The model implies that zones with a mobility lower than that in the middle part of the channel originate at the edges of the gate. An analysis shows that, in this case, the plot of the dependence of 1/μeff on 1/L should be linear, which is exactly what is observed experimentally. The use of this plot makes it possible to determine both the electron mobility μ0 in the middle part of the channel and the quantity A that characterizes the zones with lowered mobility at the gate’s edges.  相似文献   

9.
The reflection spectra of n-MnxHg1?xTe single crystals and epitaxial layers were measured at 300 K. The effective electron mass was determined for the samples with x=0.06–0.10 and an electron concentration N>6×1016 cm?3. The calculated values of effective electron mass are close to experimental values.  相似文献   

10.
The amplitude-frequency modulation of oscillations of the magnetoresistance of 2D electrons in an AlSb(δ-Te)/InAs/AsSb(δ-Te) quantum well is studied. In the dependence of the amplitude of the oscillations δ(1/B) T = const, regions of negative Dingle temperature are observed. The anomalies in the dependence δ(1/B) T = const are attributed to the fact that the quantizing magnetic field resonantly induces intersubband electron-electron interaction between the 2D electrons of the ground size-quantization subband and excited subband. The resonance fields B and the times corresponding to the collision-related broadening of the Landau levels are estimated. The concentration threshold of filling of the excited size-quantization subband is established at a level of n s ≈ 8 × 1011 cm?2.  相似文献   

11.
The possibility of using the normal skin effect in dielectric waveguides for long-wavelength radiation is analyzed. A design of a waveguide integrated with a heterolaser is suggested, in which an undoped layer of GaAs is clad between heavily-doped n- and p-Al x Ga1 ? x As alloy layers, reflecting radiation because of the normal skin effect. It is shown that an efficient waveguide can be formed using n-Al x Ga1 ? x As layers with x < 0.45 and the electron concentration N > 5 × 1018 cm?3 and p-Al x Ga1 ? x As layers of any composition with the hole concentration P ≥ 3 × 1019 cm?3.  相似文献   

12.
An approach is proposed to calculate the optimal parameters of silicon-based heterojunction solar cells whose key feature is a low rate of recombination processes in comparison with direct-gap semiconductors. It is shown that at relatively low majority-carrier concentrations (Nd ~ 1015 cm–3), the excess carrier concentration can be comparable to or higher than Nd. In this case, the efficiency η is independent of Nd. At higher Nd, the dependence η(Nd) is defined by two opposite trends. One of them promotes an increase in η with Nd, and the other associated with Auger recombination leads to a decrease in η. The optimum value Nd ≈ 2 × 1016 cm–3 at which η of such a cell is maximum is determined. It is shown that maximum η is 1.5–2% higher than η at 1015 cm–3.  相似文献   

13.
The electrical properties of silicon implanted with Er and O ions in a wide dose range have been studied. The dependence of electron mobility on the concentration of electrically active centers is determined for Si:Er layers with Er concentrations in the range of 9×1015–8×1016 cm?3. Sharp bends related to specific features of Er segregation in solid-phase epitaxial recrystallization are observed in the concentration profiles of electrically active centers, n(x), and Er atoms, C(x), at Er ion implantation doses exceeding the amorphization threshold. The n(x) and C(x) profiles virtually coincide near the surface. A linear rise in the maximum concentration of electrically active centers at approximately constant effective coefficient of their activation, k, is observed at Er implantation doses exceeding the amorphization threshold. At an Er concentration higher than 7×1019 cm?3, the concentration of electrically active centers levels off and k decreases.  相似文献   

14.
The impact ionization of acceptors in aluminum-doped 4H-SiC epitaxial films (Al concentration 2 × 1015 cm?3) at a temperature of 77 K is studied. It is found that the impact-ionization coefficient exponentially depends on the reverse electric field: α p = α*pexp(?F*/F). The largest ionization coefficient is α* p = 7.1 × 106 cm?3 s?1, and the threshold field is F* = 2.9 × 104 V/cm.  相似文献   

15.
Surface generation of minority charge carriers in silicon metal-oxide-semiconductor (MOS) structures is efficient only at the initial recombinationless stage. Quasi-equilibrium between surface generation centers and the minority-carrier band is established in a time t ~ 10?5 s. In the absence of other carrier generation channels, an equilibrium inversion state at 300 K would need t = t > 103 years to become established. In fact, the time t ∞ is much shorter, due to excess-carrier generation via centers located at the SiO2/Si interface over the gate periphery. This edge-related generation can easily be simulated in an MOS structure with a single gate insulated from Si by oxide layers of various thicknesses. At gate depleting voltages V g , the role of the periphery is played by a shallow potential well under a thicker oxide, and the current-generation kinetics becomes unconventional: two discrete steps are observed in the dependences I(t), and the duration and height of these steps depend on V g . An analysis of the I(t) curves allows determination of the electric characteristics of the Si surface in the states of initial depletion (t = 0) and equilibrium inversion (t = t), as well as the parameters of surface lag centers, including their energy and spatial distributions. The functionally specialized planar inhomogeneity of a gate insulator is a promising basis for dynamic sensors with integrating and threshold properties.  相似文献   

16.
The dependences of the electron mobility μeff in the inversion layers of fully depleted double–gate silicon-on-insulator (SOI) metal–oxide–semiconductor (MOS) transistors on the density N e of induced charge carriers and temperature T are investigated at different states of the SOI film (inversion–accumulation) from the side of one of the gates. It is shown that at a high density of induced charge carriers of N e > 6 × 1012 cm–2 the μeff(T) dependences allow the components of mobility μeff that are related to scattering at surface phonons and from the film/insulator surface roughness to be distinguished. The μeff(N e ) dependences can be approximated by the power functions μeff(N e) ∝ N e ?n . The exponents n in the dependences and the dominant mechanisms of scattering of electrons induced near the interface between the SOI film and buried oxide are determined for different N e ranges and film states from the surface side.  相似文献   

17.
TlCrS2 and TlCrSe2 crystals were synthesized by solid-state reaction. X-ray diffraction analysis showed that TlCrS2 and TlCrSe2 compounds crystallize in the hexagonal crystal system with lattice parameters a = 3.538 Å, c = 21.962 Å, c/a ≈ 6.207, z = 3; a = 3.6999 Å, c = 22.6901 Å, c/a ≈ 6.133, z = 3; and X-ray densities ρ x = 6.705 and 6.209 g/cm3, respectively. Magnetic and electric studies in a temperature range of 77–400 K showed that TlCrS2 and TlCrSe2 are semiconductor ferromagnets. Rather large deviations of the experimental effective magnetic moment of TlCrS2 (3.26 μB) and TlCrSe2 (3.05 μB) from the theoretical one (3.85 μB) are attributed to two-dimensional magnetic ordering in the paramagnetic region of strongly layered ferromagnets TlCrS2 and TlCrSe2. The effect of the magnetic phase’s transition on the charge transport in TlCrS2 and TlCrSe2 is detected.  相似文献   

18.
Temperature dependences of electron mobility in p-Hg1?xCdxTe films (x=0.210–0.223) grown by molecular beam epitaxy are investigated. In the temperature range 125–300 K, mobility was found by the mobility-spectrum method, and for the range 77–125 K, it was found using a magnetophotoconductivity method suggested in this study. The method is based on the measurement of the magnetic-field dependence of photoconductivity. The magnetic field is parallel to the radiation and normal to the sample surface. The electron mobility is determined using the simple expression μ n [m2/(V s)]=1/B H [T]. Here, B H is the induction of the magnetic field corresponding to a half-amplitude of the photoconductivity signal under zero magnetic field. In the temperature range 100–125 K, the results obtained by the magnetophotoconductivity and mobility-spectrum methods coincide. For the samples investigated, the electron mobility at 77 K is in the range 5–8 m2/(V s).  相似文献   

19.
Transistors with a high electron mobility based on AlGaN/GaN epitaxial heterostructures are promising component types for creating high-power electronic devices of the next generation. This is due both to a high charge-carrier mobility in the transistor channel and a high electric durability of the material making it possible to achieve high breakdown voltages. For use in power switching devices, normally off GaN transistors operating in the enrichment mode are required. To create normally off GaN transistors, the subgate region on the basis of p-GaN doped with magnesium is more often used. However, optimization of the p-GaN epitaxial-layer thickness and doping level makes it possible to achieve a threshold voltage close to V th = +2 V for the on-mode of GaN transistors. In this study, it is shown that the use of a subgate MIS (metal–insulator–semiconductor) structure involved in p-GaN transistors results in an increase in the threshold voltage for the on-mode to V th = +6.8 V, which depends on the subgate-insulator thickness in a wide range. In addition, it is established that the use of the MIS structure results in a decrease in the initial transistor current and the gate current in the on mode, which enables us to decrease the energy losses when controlling powerful GaN transistors.  相似文献   

20.
Spectra of edge photoluminescence (PL) at 300 K have been studied in a set of Czochralski-grown Te-doped GaAs single crystals with a free carrier density of n0=1017–1019 cm?3. The carrier density dependences of the chemical potential and band gap narrowing are obtained by analyzing the PL spectral line profiles. The dependence of the effective mass of electrons at the bottom of the conduction band on their density, m 0 * (n0), is calculated. It is shown that the nonmonotonic m 0 * (n0) dependence correlates with data on electron scattering in the material under study and results from the ordering of impurity complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号