首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strain-rate sensitivity of strength is a significant factor to evaluate the deformation mode of crystalline materials. The strain rate sensitivity of hardness is experimentally investigated here for hydroxyapatite coatings that are sputter deposited onto titanium-coated silicon wafers. These biocompatible HA coatings can provide a strong, dense interface between metal alloy implants and porous hydroxyapatite that can help in-growth of tissue. The interface to the metal alloy implant is important to transfer stress during loading. So, it is very important to know the behavior of the coating under different conditions of loading. Our dynamic test procedure now takes advantage of nanoscratch testing to measure the change in scratch hardness of the coating over a strain rate range that may well simulate the mechanical loading conditions found at the interface between implants and hydroxyapatite coatings.  相似文献   

2.
3.
The effect of prestrain with a path change on the strain rate sensitivity of AA5754 sheet was investigated. Prestrain magnitudes between 0% and 12% were applied in plane strain in either the transverse or longitudinal (rolling) material direction. Samples were then loaded in uniaxial tension in the longitudinal direction at strain rates of 0.001/s and 0.1/s. Results show that when a path change is involved between prestrain and subsequent uniaxial loading, the strain rate sensitivity of the hardening rate at 0.1/s compared to 0.001/s is reduced. The rate sensitivity of the yield stress remains constant with increasing magnitudes of prestrain, while the rate sensitivity of the elongation to failure decreases with increasing prestrain. A permanent softening of the flow stress is also observed, which is greater when the path change is combined with a change in orientation.  相似文献   

4.
The strain rate sensitivity of various relative densities, open-cell aluminum alloy foams fabricated by a powder metallurgical method is investigated under compression loading. Their response to strain rate has been tested over a wide range of strain rates, from 10−3 to 2600 s−1 at room temperature. Within this range, the experimental results show that the yield strength and the energy absorbed increase with an increase of strain rate. However, the yield strength of higher relative density foams increases bilinearly with the logarithm of strain rate, and the yield strength of lower relative density foams shows only a linear increase. The compaction strain slightly decreases with an increase of strain rate. The higher relative density aluminum alloy foams are more sensitive to strain rate than the lower relative density foams.  相似文献   

5.
Spatio-temporal characteristics of plastic instability denoted by locally extreme values in strain rate contours computed with digital image correlation are investigated in biaxial deformation of AA5182-O sheet. Temporal characteristics are similar to those of Portevin–Le Châtelier (PLC) bands in uniaxial tension. Spatial characteristics, however, dramatically differ from PLC band morphologies in uniaxial tension. Initiation occurs in a localized deformation ring (LDR) that does not include the pole, followed by a rapid transition to a circular region that includes pole, i.e. a localized deformation circle (LDC). A critical strain is required to trigger serrated flow at the pole, and a negative strain rate sensitivity of the flow stress at the pole suggests that the underlying microstructural mechanism is dynamic strain aging. Plastic instability hops between the LDR and the LDC until a critical strain is reached at which it appears in a localized deformation band, with no circular symmetry, that hops around the pole. Future model development will require modifications to existing theoretical frameworks to account for the unique spatial characteristics of plastic instability during biaxial deformation of AA5XXX alloys.  相似文献   

6.
Nanoscaled bimetallic Cu/Ta multilayers were fabricated and their deformation behaviors characterized under nanoindentation. The individual Cu and Ta layers had equal thickness (∼30 nm) but quite different grain sizes. By evaluating the hardness of the bi-metal system at various strain rates, a transitional point of its strain rate sensitivity at the strain rate of 10−3 s−1 was observed. Contributions from dislocation and grain boundary (GB) motions to plastic deformation are found to be strongly dependent upon strain rate as well as grain size in alternative constituent layers. Whilst dislocation-mediated motions take up the majority of deformation in a Cu/Ta multilayer at high strain rates, GB motions occurring mainly in the Ta layers take over at low strain rates.  相似文献   

7.
In the 7xxx aluminium alloying system several mechanisms influence the hardening behaviour of the alloys, e.g. particle size and distribution, dislocation density and alloying elements in solid solution. This work is an experimental study of ageing and work-hardening considering a commercial AA7108 alloy in the as-cast and homogenized condition. Tensile specimens have been exposed to a solution heat treatment and a two-step age-hardening treatment with varying time at the final temperature. The tensile data for the different tempers have been evaluated in elucidation of already existing models based on a one-parameter framework. The precipitate size and distribution have been further investigated in the transmission electron microscope for a selection of tempers, and the influence of these parameters on the work-hardening behaviour has been discussed.  相似文献   

8.
9.
The Portevin–LeChatelier (PLC) effect with characteristic temporal instabilities in the recorded stress is closely associated with local inhomogeneities of deformation. Measurements on Cu–10 at.% Al and 15 at.% Al polycrystals by means of a novel laser scanning extensometer, which provides quasi-simultaneous spatial resolution along the main part of the specimen, have been used for an unambiguous characterization of the PLC deformation bands of type A (continuous propagation of single band along the specimen), type B (discontinuous band propagation) and type C (stochastic nucleation of single bands along the specimen), supplementing and correcting the common characterization from the load serrations. Surprising transitions between the types have been detected in the effective stress versus temperature (or versus strain rate) diagram. The parameters of type A bands (local band strain, band width, propagation rate) have been measured at various temperatures in dependence of grain size, specimen thickness and imposed deformation rate, and are compared with predictions of a recent theoretical treatment.  相似文献   

10.
Y.H. Chew  C.C. Wong  F.C. Lim 《Thin solid films》2008,516(16):5376-5380
The strain rate sensitivity and Hall-Petch behavior of ultrafine-grained gold (Au) wires were evaluated and compared to results outlined in a similar study conducted on both coarse and ultrafine-grained Au films by Emery [R.D. Emery, G.L. Povirk, Acta Mater. 51 (2003) 2067; R.D. Emery, G.L. Povirk, Acta Mater. 51 (2003) 2079]. The results showed that the strain rate sensitivity (m) of fine-grained Au films is ∼ 0.2, whereas coarse-grained Au films are strain-rate insensitive. In comparison, fine-grained Au wires have a weak m of only 0.02. The Hall-Petch coefficient (k) of Au wires range between 0.02 and 0.06 MPa m1/2, while the k value of Au film is higher (k ∼ 0.25 MPa m1/2). These results imply that Au films have a larger strength contribution from the grain boundaries than wires. Addition of calcium in Au wires does not change m, but increases the k value. The difference in k could possibly be attributed to the ability of Ca to increase dislocation density along the grain boundaries.  相似文献   

11.
It is well documented that the strain rate sensitivity(m)increases at refined grain size for face-centered cubic(FCC)metals and alloys.Through a series of nanoindentation testing,however,we experimentally demonstrated a striking departure from conventional FCC metals that CoCrFeMnNi high entropy alloy(HEA)with FCC lattice structure exhibits monotonously decreased m as grain size reduced from~30.3μm to 7.2 nm.Moreover,the apparent activation volume v*,which generally shows an opposite trend of m,exhibited the identical decreasing trend with reduced grain size as that of m.Such an unusual trend of m and its correlation with v* in the FCC HEA alloys can be understood by a distinct deformation-mechanism-transitions and unique dislocation morphology evolution that differs from conventional FCC metals.  相似文献   

12.
This study aimed to determine the proper combinations of numerical modeling conditions (e.g. solver, element type, material model) for warm hydroforming of AA5754-O aluminum alloy sheets. Assessment of finite element analyses (FEA) is based on comparison of numerical results and experimental measurements obtained from closed-die forming, hydraulic bulge and tensile tests at different temperature (25–300 °C) and strain rate (0.0013–0.013 1/sec) levels. Thinning (% t) and cavity filling ratios (CFR) on the formed parts were taken as comparison parameters. Several numerical analyses employing different element types, solution methods and material models were performed using the commercially available FEA package LS-Dyna to determine the best combination of modeling options to simulate the actual warm hydroforming operation as accurately as possible. Analyses showed that relatively better predictions were obtained using isotropic material model, shell elements and implicit solution technique when compared with experimental results.  相似文献   

13.
H. Yuan 《Materials Letters》2008,62(25):4085-4087
The tensile properties of cold rolled sheets were measured for the hot band and annealed hot band of AA 5052 aluminum alloy. The variation in yield strength with rolling true strain was used to represent the hardening rate of cold rolled sheets. The Taylor factor (M?) of cold rolled sheets in tension along the rolling direction was calculated based on the measured orientation distribution functions. The strain hardening and orientation hardening/softening produced by cold deformation were analyzed. The results show that the contribution to the hardening rate of cold rolled sheets comes largely from the deformed microstructure and partly from the texture change. For the annealed hot band the orientation softening occurs at strains below 0.5, while the orientation hardening occurs at strains over 0.5. For the hot band the dM?/dε value is always positive, indicating that orientation softening does not occur.  相似文献   

14.
Effective strain rate sensitivity of two phase materials   总被引:1,自引:0,他引:1  
Analytical expressions are derived for the effective strain rate sensitivity exponent of a two phase material when the behavior of both phases and of the composite itself can be described by power law relations between the stress and strain rates. The material is assumed to be plastically isotropic and obey to von-Mises type creep behavior. Two types of boundary conditions are considered: strain or stress-controlled. The obtained formulas are applied to a geological composite material (mixture of camphor and octachloropropane) with the help of different simple models of two phase composites.  相似文献   

15.
LC4高强铝合金的慢应变速率拉伸试验   总被引:16,自引:0,他引:16  
采用慢应变速率拉伸 (SSRT)技术测试了LC4铝合金在空气和质量分数为 3.5 %的NaCl溶液中的应力腐蚀断裂 (SCC)行为 .研究了应变速率对铝合金SCC行为的影响和氢在LC4高强铝合金应力腐蚀断裂过程中的作用 .试验结果表明 ,LC4合金具有SCC敏感性 ,在潮湿空气中发生应力腐蚀断裂 ,而在干燥空气中不发生应力腐蚀断裂 .对于长横取向的LC4铝合金试样 ,在应变速率为 1.331× 10 6s 1时 ,其SCC敏感性比应变速率为 6 .6 5 5× 10 6s 1时的敏感性大 .在潮湿空气和阳极极化条件下 ,铝合金的应力腐蚀断裂机理是以阳极溶解为主 ,氢几乎不起作用 .在预渗氢或阴极极化条件下 ,氢脆起主要作用 ,预渗氢时间延长可加速LC4合金的应力腐蚀断裂 .  相似文献   

16.
Quasi-static and dynamic compression tests on ultra-fine grained (UFG) copper (Cu 99.9) were performed at temperatures ranging from 77 to 573 K and strain rates ranging from 10−3 to 5 × 103 1/s using an electronic universal testing machine and the split Hopkinson pressure bar system, respectively. We focused on the strain rate sensitivity and its dependence on experimental temperatures. The results show that UFG-Cu has enhanced strain rate sensitivity that is apparently temperature dependent. The activation volume of UFG-Cu is estimated to be on the order of ∼10b3 at current experimental temperature and strain rate range. The plastic deformation mechanism is suggested to be dislocation-grain boundary interactions.  相似文献   

17.
In this paper are presented two extensions of the Rusinek–Klepaczko constitutive relation [Rusinek A, Klepaczko JR. Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int J Plasticity 2001;17:87–115] to define the behaviour of aluminium alloys at wide ranges of strain rate and temperature. The formulations reported extend the validity of the Rusinek–Klepaczko model for the definition of particular aspects of the behaviour of aluminium alloys, namely the negative strain rate sensitivity and the viscous drag. Such formulations are applied to describe the thermo-viscoplastic behaviour of two commercial aluminium alloys (AA 5083-H116 and AA 7075) using experimental data available in the literature [Clausen AH, Børvik T, Hopperstad OS, Benallal A. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater Sci Eng A 2004;364:260–72; El-Magd E, Abouridouane M. Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. Int J Impact Eng 2006;32:741–58]. Their analytical results are compared with those obtained from the phenomenological constitutive relations reported in Clausen et al. (2004) and El-Magd and Abouridouane (2006). The best agreement with experiments is achieved by the predictions provided by the extended Rusinek–Klepaczko models. Moreover, the formulations presented may be implemented into FE code using for example the algorithm reported in [Zaera R, Fernández-Sáez J. An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations. Int J Solids Struct 2006;43:1594–612].  相似文献   

18.
Ultrafine-grained Al–4Y–4Ni and Al–4Y–4Ni–0.9Fe (at.%) alloys were synthesized by the consolidation of atomized powders and subsequent hot extrusion. The mechanical behavior of these two alloys has been studied by performing uniaxial tension tests ranging from room temperature to 350 °C. These alloys, with high volume fraction of second-phase particles, exhibited ambient temperature tensile strength ranging from 473 to 608 MPa and plastic elongation ranging from 6.7 to 9.6% at an initial strain rate of 1 × 10−3 s−1. However, lower ductility was observed with decreasing strain rate at the intermediate temperature ranging from 150 to 250 °C for Al–Y–Ni–Fe alloys due to limited work hardening.  相似文献   

19.
The deformation behavior in isothermal compression of Ti–6Al–4V alloy is investigated in the deformation temperatures ranging from 1093 K to 1303 K, the strain rates ranging from 0.001 s−1 to 10.0 s−1 at an interval of an order magnitude and the height reductions ranging from 20% to 60% at an interval of 10%. Based on the experimental results in isothermal compression of Ti–6Al–4V alloy, the effect of processing parameters and grain size of primary α phase on the strain rate sensitivity exponent m and the strain hardening exponent n is in depth analyzed. The strain rate sensitivity exponent m at a strain of 0.7 and strain rate of 0.001 s−1 firstly tends to increase with the increasing of deformation temperature, and maximum m value is obtained at deformation temperature close to the beta-transus temperature, while at higher deformation temperature it drops to the smaller values. Moreover, the strain rate sensitivity exponent m decreases with the increasing of strain rate at the deformation temperatures below 1253 K, but the m values become maximal at a strain rate of 0.01 s−1 and the deformation temperature above 1253 K. The strain rate affects the variation of strain rate sensitivity exponent with strain. Those phenomena can be explained reasonably based on the microstructural evolution. On the other hand, the strain hardening exponent n depends strongly on the strain rate at the strains of 0.5 and 0.7. The strain affects significantly the strain hardening exponent n due to the variation of grain size of primary α phase with strain, and the competition between thermal softening and work hardening.  相似文献   

20.
Cyclic deformation behavior of friction-stir-welded dissimilar AA2024-T351 to AA7075-T65 aluminum alloy joints was evaluated via stepwise tests at different strain rates,along with transmission electron microscopy examinations to characterize the precipitates required to assess internal stresses.Electron backscatter diffraction was employed to observe the inhomogeneous microstructures of the FSWedjoints.Strain localization appeared in the heat affected zone (HAZ) of AA2024 side.After cyclic deformation of 500 cycles at a total strain amplitude of 0.5 %,the strength of the dissimilar joints resumed basically to that of AA2024 base material.And the AA2024 HAZ was obviously hardened,which should be attributed to the introduced dislocations during cyclic deformation process.Cyclic hardening capacity of the joints increased with decreasing strain rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号