首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Errors produced by a nonlinear predictive scheme contain information about both the observations and the prediction system. Therefore, its error history would be expected to contribute to increasing the skill of the predictions if it is included in the forecast. In this study an error recycling procedure is developed for tropical cyclone track prediction. Errors are defined here as differences between the model forecast and the best track position. Error histories are incorporated into a nonlinear analogue, or simplex, forecast scheme and applied to tropical cyclone track prediction, using the archives of observed position data associated with the forecast errors. Various forecast experiments of the cyclone tracks are performed: standard simplex predictions using observed positions only; simplex predictions improved by error forecasts based on libraries of both observations and the recycled forecast errors; and, finally, predictions that include NWP-model forecasts and their errors as predictors. The resulting gains in skill of predictions out to 72 hours ahead are found to be substantial. Received August 12, 1999 Revised November 5, 1999  相似文献   

2.
王晨稀  倪允琪 《气象学报》2011,69(5):757-769
针对热带气旋观测中的敏感区域问题,用数值模拟的方法,以GRAPES-TCM为试验模式,对登陆中国的2个热带气旋“派比安”与“圣帕”进行了敏感性试验,并通过模拟其他4个热带气旋路径对试验结果进行了验证.结果显示,初始场的不确定性导致了热带气旋路径的不确定性,但初始场中涡旋场的变化对路径几乎没有影响,环境场中位于涡旋外、距...  相似文献   

3.
Summary The number of tropical cyclones observed in the Australian region (south of equator; 105–160° E) has apparently declined since the start of reliable (satellite) observations in the 1969/70 season. However, the number of more intense cyclones (with minimum pressures dropping to 970 hPa or lower) has increased slightly. The numbers of weak (minimum pressures not dropping below 990 hPa) and moderate systems (minimum pressures between 970 and 990 hPa) have declined. Possible reasons for these different trends are discussed. The decline in the number of weaker cyclones may at least partly reflect improved understanding of the nature of some weak systems. The decline in the number of cyclones more intense than 990 hPa primarily reflects the downward trend in the Southern Oscillation Index (SOI). Previous work has demonstrated that the number of tropical cyclones observed in the Australian region each cyclone season is related to the value of the SOI prior to the start of the cyclone season. This relationship is clearest with the number of moderate cyclones. The SOI is only weakly related to the number of intense or weak cyclones. The increase in the number of intense cyclones is not attributable to the trend in the SOI. Nor is there clear reason, at present, to suspect that it is artificial (i.e., due to changes in observing or analysis techniques).With 7 Figures  相似文献   

4.
中国近几年热带气旋研究进展   总被引:16,自引:7,他引:16  
总结了中国过去几年尤其是“八五”结束后热带气旋领域取得的研究成果。主要包括以下几个方面的内容:热带气旋的结构、数值预报研究、业务数值预报评估、热带气旋暴雨、热带气旋的气候特征以及热带气旋的灾害等等。  相似文献   

5.
非静力模式预报热带气旋路径个例试验   总被引:3,自引:0,他引:3  
利用非静力模式(MM5V2)对9611号、9904号等北上热带气旋路径预报进行民试验。用松驰(Nudging)四维同化方案和人造热带气旋(Bogus TC)技术,使独t-12时刻的模式场(包括第一个Bogus TC)通过预积分逐步逼近to时刻的Bogus TC和同时刻的观测资料场庆1999年能够得到相隔6h一次的AT106L19预报场后,分别在t-12、t-a6和to时刻各制做一个Bogus TC  相似文献   

6.
目前,热带气旋预报性能的检验和分析多采用各中心每年台汛后整编的最佳路径数据集(即"年鉴")资料作为真值。然而,由于年鉴资料通常在次年才能发布,所以在业务上,常以实时定位、定强资料作为"真值"进行预报性能的检验,因而不同机构(口径)给出的预报性能往往不尽相同,造成了混乱。此外,实际业务预报中,因没有实时的年鉴资料,各预报方法的起报位置只能采用实时业务定位,显然不可避免地导致了误差。为分析使用实时定位和年鉴作为"真值"进行预报性能检验的差异、评估定位误差对预报性能造成的可能影响,本文首先考察最佳路径和实时/初始定位之间的差异(即定位误差)及其分布特征,然后分析采用实时/初始定位和最佳路径作为"真值"计算预报误差时的差异,最后基于最基础的气候可持续性(Climatology and Persistence,CLIPER)预报方法初步评估了预报性能对定位误差的敏感性。结果表明:以中国气象局整编的年鉴(CMA-STI的最佳路径数据集)资料为"真值",2013—2019年间国内外各主要预报机构及全球模式的定位误差平均为24.3 km;若以东京台风中心(RSMC-Tokyo)的年鉴资料为"真值",则定位误差平均为26.2 km。分析发现,定位误差与强度密切相关,热带风暴阶段的定位误差高达35.7~41.1 km,而超强台风阶段的定位误差仅为7.5~8.3 km;在96 h预报时效内,以最佳路径为"真值"计算得到的平均预报误差均略小于以实时/初始定位为"真值"的误差,但强度越强差异越小;定位误差对短时效内的预报性能有较显著的影响。  相似文献   

7.
西北太平洋热带气旋移动方向变化异常的环流特征   总被引:1,自引:2,他引:1  
周宜卿  余锦华 《气象科学》2015,35(6):720-727
基于中国气象局和上海台风研究所整编的1972-2011年热带气旋(TC)best-track资料,采用极端天气气候事件定义的百分位法确定TC移动方向异常变化的阈值,利用Lanczos滤波法将大气环流分解成为季节内振荡(MJO)、准两周振荡(QBW)和天气3种尺度环流场,研究这3种尺度环流对热带气旋在南海地区异常北折的影响。结果表明:近40 a的资料统计显示,热带气旋12 h内移向逆时针方向偏转50°以及顺时针方向偏转47°为TC移动方向变化的95%分位数值,将12 h移动方向变化大于该数值的TC定义为移动方向变化异常。TC异常路径平均每年发生2.68次,9月份发生的概率最大,约为7%,最常发生在南海海域。分析3个发生在南海地区热带气旋异常北折的引导气流发现,在TC转向前,向西的引导气流纬向速度减慢,经向分量先向南加速,随后突然转为向北加速。天气尺度对应的引导气流对TC异常右偏影响最为明显,对流层中高层热带气旋中心东南侧强天气尺度西南气流引导TC异常右偏。  相似文献   

8.
采用MTSAT2卫星红外云图资料及NCEP/NCAR再分析资料,研究了热带气旋Meranti(2010)异常路径的成因。结果表明:Meranti的路径由西行、打转、北上三个阶段组成。在西行、北上阶段,环境场引导流起着主要作用,Meranti的非对称结构对其也有一定影响,非对称对流系统的作用较弱。在打转阶段,环境场引导流和非对称结构均不能解释Meranti打转的原因,而非对称对流系统则起着主要作用。不同阶段的Meranti外缘线的分形维数特征存在明显区别。在西行、北上阶段,其分形维数处于高值段且变化平缓;在打转阶段,则处于低值段且变化较大。  相似文献   

9.
10.
11.
In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.  相似文献   

12.
Summary In this study an attempt is made to estimate theinherent limits to tropical cyclone mean absolute track position errors out to 72 hours ahead and to compare these estimates with the position errors currently being obtained inpractice at weather centres around the world. A knowledge of the magnitude of the difference between the lower limit to predictability and that being achieved with state-of-the-art numerical weather prediction (NWP) models is of vital importance. A small difference would indicate that there is little further need for continued initiatives in the prediction of tropical cyclone tracks. On the other hand, a large difference would imply either that the problem requires continued emphasis or if there has been no significant trend towards reducing the forecast track errors, that present research and development techniques need to be extended or new procedures developed.It was found that the difference between the inherent and practical limits of tropical cyclone track position errors is presently about 35 to 40 per cent for advanced baroclinic NWP systems, a moderate to large difference, and one that is almost invariant between tropical cyclone basins. For simpler models, such as barotropic models, the difference is closer to 45 per cent but is again almost invariant. As far as the authors are aware, these are the first estimates of the lower bounds of tropical cyclone track predictability. Finally, very recent research studies with emerging range of high quality data, high density data sources, improved models and new data assimilation techniques suggest that the difference possibly is now down to about 30 to 35 per cent. This value is encouragingly small but still large enough to continue active research programs in improving tropical cyclone motion prediction. Much of the forecast track errors now come from major forecast errors associated with tropical cyclones that follow erratic tracks.With 3 Figures  相似文献   

13.
Tropical cyclone track forecasts have been improved, and forecast intervals have been extended to five days, owing to improved global and regional numerical model guidance. Critical time requirements that must be met for operational use of the deterministic model track forecasts are summarized for the U.S. and other selected non-U.S. tropical cyclone warning centers. One of the most accurate deterministic model forecasts from the European Center for Medium-range Weather Forecasts arrives too late to be used with other models at the + 6 h warning time, and thus is at least 12 h old before it can be operationally used. The time-critical nature of the tropical cyclone warning system is a major obstacle to operational use of single-model, or proposed multi-model, ensemble prediction system (EPS) mean and spread information, which is 12 h (or 18 h) delayed. This EPS mean and spread must also be superior to the mean and spread of the consensus of deterministic models that are available six hours earlier. These requirements must be met before the EPS tropical cyclone tracks will be operationally useful in specifying the uncertainty in the official track forecasts, which is the next challenge in tropical cyclone track warnings.  相似文献   

14.
This study examines the dependence of the tropical cyclone (TC) intensity errors on the track errors in the Weather Research and Forecasting (WRF-ARW) model. By using the National Centers for Environmental Prediction global final analysis as the initial and boundary conditions for cloud-resolving simulations of TC cases that have small track errors, it is found that the 2- and 3-day intensity errors in the North Atlantic basin can be reduced to 15 and 19 % when the track errors decrease to 55 and 76 %, respectively, whereas the 1-day intensity error shows no significant reduction despite more than 30 % decrease of the 1-day track error. For the North-Western Pacific basin, the percentage of intensity reduction is somewhat similar with the 2- and 3-day intensity errors improved by about 15 and 19 %, respectively. This suggests that future improvement of the TC track forecast skill in the WRF-ARW model will be beneficial to the intensity forecast. However, the substantially smaller percentages of intensity improvement than those of the track error improvement indicate that ambient environment tends to play a less important role in determining the TC intensity as compared to other factors related to the vortex initialization or physics representations in the WRF-ARW model.  相似文献   

15.
16.
This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850?hPa with a value?≥450?×?10?6?s?1, and the temperature at 300?hPa being 1°C higher than the average temperature within 15° latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3.  相似文献   

17.
18.
The effect of the lateral boundary scheme in regional climate model (RCM) on the track simulation of tropical cyclone (TC) was investigated using RegCM3, for the case of Winnie (1997), which formed in the Western Pacific and landed on China in August 1997. The results show that there is an inevitable simulation error in the track of Winnie, and the narrower buffer zone size (BZS) will make a great error. However, it was demonstrated that a much broader BZS does not allow a better track simulation of Winnie, and the optimal BZS does not reduce the track error substantially. Moreover, the configuration scheme of nudging parameters plays an important role in the track simulation, and different nudging parameter configuration scheme could make the root mean square errors (RMSEs) of simulated track by more than two times. Nevertheless, the optimal configuration scheme can reduce the track error effectively by maintaining the equilibrium between the two additional nudging terms in the prognostic equations in the buffer zone, whereas both the strong nudging scheme and the weak nudging scheme distort the track simulation of the Winnie. It is also found that the simulated weaker west Pacific subtropical high (WPSH), which leads to the turning of the TC ahead of time, is the reason for the track simulation error. A possible approach for reducing track simulation error of TCs is also discussed.  相似文献   

19.
多时间尺度环流对热带气旋海棠(0505)路径的影响   总被引:1,自引:6,他引:1  
苏源  吴立广 《气象科学》2011,31(3):237-246
利用滤波方法将NCEP/NCAR提供的FNL风场资料分离出天气尺度和低频环流场,研究不同时间尺度环流对台风海棠(0505)路径的影响。热带气旋海棠路径的特征可以分两个主要阶段,在第一阶段,海棠西侧的天气尺度反气旋和低频流场副高南侧气流共同引导海棠向西南运动;第二阶段初期,天气尺度环流抑制海棠向北转向,但海棠西侧的QBW气旋和MJO尺度的气流共同引导海棠向北运动。海棠运动后期,海棠与低频气旋的相互作用导致了天气尺度流场中波列的产生和发展,形成了热带气旋的传播分量,令海棠产生了向东北转向的趋势,但是由于MJO环流场中副高的北抬和QBW气旋的引导,最终导致海棠向西运动。  相似文献   

20.
热带气旋移动速度是目前热带气旋研究热点之一。本文利用1951—2017年中国国家气象局最佳路径集资料,系统分析了西北太平洋海域热带气旋不同强度等级移动速度的年代际特征,初步探讨其原因,并对不同强度等级移动速度的分布特征进行系统诊断。结果表明,1951—2017年间平均移动速度(所有强度等级平均及对于大部分强度等级)呈现出减慢趋势,且主要体现在强热带气旋等级移动速度减慢;热带气旋向高纬度迁移趋势理论上将使移动速度增大而移动速度仍然减慢,说明气候因素是引起移动速度减慢的一个重要因素;不同强度等级平均移动速度、增强阶段基本相当,减弱阶段随强度减弱在初、中期明显增加,之后又逐渐减小,变性气旋移动速度显著增加;不同强度等级速度概率分布,增强阶段基本相同且相对集中,减弱阶段差异较大且相对分散,变性气旋最为分散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号