首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial distribution and behaviour of the global fallout (137)Cs in the tropical, subtropical and equatorial soil-plant systems were investigated at several upland sites in Brazil selected according to their climate characteristics, and to the agricultural importance. To determine the (137)Cs deposition density, undisturbed soil profiles were taken from 23 environments situated between the latitudes of 02 degrees N and 30 degrees S. Sampling sites located along to the equator exhibited (137)Cs deposition densities with an average value of 219Bqm(-2). Extremely low deposition densities of 1.3Bqm(-2) were found in the Amazon region. In contrast, the southern part of Brazil, located between latitudes of 20 degrees S and 34 degrees S, exhibited considerably higher deposition densities ranging from 140Bqm(-2) to 1620Bqm(-2). To examine the (137)Cs soil-to-plant transfer in the Brazilian agricultural products, 29 mainly tropical plant species, and corresponding soil samples were collected at 43 sampling locations in nine federal states of Brazil. Values of the (137)Cs concentration factor plant/soil exhibited a large range from 0.020 (beans) to 6.2 (cassava). Samples of some plant species originated from different collecting areas showed different concentration factors. The (137)Cs content of some plants collected was not measurable due to a very low (137)Cs concentration level found in the upper layers of the incremental soils. Globally, the soil-to-plant transfer of (137)Cs can be described by a logarithmic normal distribution with a geometric mean of 0.3 and a geometric standard deviation of 3.9.  相似文献   

2.
The critical paths for radionuclides and the critical foods in Asian countries differ from those in Western countries because agricultural products and diets are different. Consequently, safety assessments for Asian countries must consider rice as a critical food. As most rice is produced under flooded conditions, the uptake of radionuclides by rice is affected by soil conditions. In this report, we summarize radionuclide and stable element soil-to-plant transfer factors (TFs) for rice. Field observation results for fallout 137Cs and stable Cs TFs indicated that while fallout 137Cs had higher TF than stable Cs over several decades, the GM (geometric mean) values were similar with the GM of TF value for 137Cs being 3.6 × 10−3 and that for stable Cs being 2.5 × 10−3. Although there are some limitations to the use of TF for stable elements under some circumstances, these values can be used to evaluate long-term transfer of long-lived radionuclides in the environment. The compiled data showed that TF values were higher in brown rice than in white rice because distribution patterns for elements were different in the bran and white parts of rice grains.  相似文献   

3.
Soil blocks from 18 paddy fields around three Korean nuclear power plant sites were put into lysimeters. Greenhouse experiments were carried out to investigate the (137)Cs transfer from these paddy soils to rice plants for its deposition at different growth stages. A solution of (137)Cs was applied to the flooded lysimeters at 2-3 different stages. The applied (137)Cs was mixed with the topsoil only at the pre-transplanting application. The transfer was quantified with a transfer factor based on the unit-area deposition (TF(a), m(2)kg(-1)-dry). The TF(a) in the pre-transplanting application showed a remarkable variation with the soils. However, the differences in the mean values among the study sites were not statistically significant. The straw TF(a) was 2-3 times higher than the corresponding seed value. The early-tillering stage and booting stage applications resulted in a higher transfer than the pre-transplanting application by factors of, on an average, 2 and 16 for the straws, and 3 and 25 for the hulled seeds, respectively. The (137)Cs transfer was found to correlate negatively with the soil pH and positively with the organic matter content. Based on the present results, the representative (137)Cs TF(a) values for the rice are proposed for use in the whole of Korea for the deposition at three different growth stages.  相似文献   

4.
This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K(2)SO(4)-extractable and microbially stored (137)Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of (137)Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored (137)Cs amounted to 0.64+/-0.14kBqm(-2) which corresponds to about 1.2-2.7% of the total (137)Cs soil inventory. At lower altitudes, microbial (137)Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored (137)Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of (137)Cs in soils and in the (137)Cs uptake by plants.  相似文献   

5.
(137)Cs and (90)Sr background levels in soil and plant around Tianwan Nuclear Power Plant (NPP) are reported. Eighty-four soil samples and 44 plant samples were collected from March 2000 to April 2002. The samples were analyzed by gamma spectrometry and radiochemical separation procedure to quantify (137)Cs and (90)Sr radioactivities. The concentrations (Bqkg(-1) dry weight) have been observed in the range of 0.6-1.6 for (90)Sr and 1.4-6.9 for (137)Cs in soils, their average values are 1.0+/-0.3 and 4.6+/-1.6, respectively, which are relatively lower than the reported values in neighboring countries. The mean concentrations (in Bqkg(-1) fresh weight except for tea and grass which is expressed in Bqkg(-1) dry weight) of (137)Cs and (90)Sr are 0.1+/-0.03 and 7.7+/-4.1 in pine needle, 0.27+/-0.05 and 3.0+/-1.1 in tea, 0.65+/-0.19 and 2.1+/-0.3 in grass, 0.033+/-0.021 and 0.084+/-0.045 in wheat, 0.019+/-0.01 and 0.23+/-0.06 in China cabbage, and 0.009+/-0.007 and 0.024+/-0.084 in rice, respectively. The pine needle and tea can be regarded as indicator species for (90)Sr and (137)Cs. The soil-to-plant transfer factor (TF) values of (90)Sr and (137)Cs are, respectively, 0.022 and 0.031 for rice, 0.066 and 3.83 for China cabbage, 0.0088 and 0.089 for wheat, and 0.037 and 0.56 for grass.  相似文献   

6.
Two types of soils (Eutric Fluvisol and Chromic Luvisol) and two crops (wheat and cabbage) were investigated for determination of the transfer of 137Cs from soil to plant. Measurements were performed using gamma-spectrometry. Results for the soil characteristics, transfer factors of the radionuclides (TF), and conversion factors (CF) (cabbage/wheat) were obtained. The transfer of 137Cs was higher for Chromic Luvisol for both the plants. Statistically significant dependence of TF of 137Cs on its concentration in soil was established for cabbage. Dependence between K content in the soil and the transfer factor of 137Cs was not found due to the high concentrations of available K. Use of bioconcentration factor (BCF) (ratio between the activity concentration of a radionuclide in a reference plant to its concentration in another plant) is demonstrated and proposed for risk assessment studies.  相似文献   

7.
Uptake of 137Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant–soil 137Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of 137Cs concentrations in plants among soils was related to differences in soil solution 137Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The 137Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997–1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in 137Cs and K concentrations in soil solution. It is concluded that differences in 137Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.  相似文献   

8.
Fallout (137)Cs and stable Cs in soils were separated with two extractants (1M CH(3)COONH(4) solution and 0.8M CH(3)COONH(4) in 5% HNO(3) solution after H(2)O(2) oxidization). The residue remaining after removal of the oxidizable organic-bound fraction was separated into the particle-size fractions including clay, silt, fine sand and coarse sand with a sieving and sedimentation method. Then, the concentrations of (137)Cs and stable Cs in the extracted fractions and the particle-size fractions were determined. The (137)Cs contents in the exchangeable and organic-bound fractions in the soil were approximately 10 and 20%, respectively. The (137)Cs content in the strongly bound fraction was about 70%, and the concentration of (137)Cs in the clay was the richest among the particle-size fractions. The specific activity of (137)Cs (concentration ratio of fallout (137)Cs/stable Cs) decreased in the order exchangeable, organic-bound and strongly bound fractions. The data suggest that equilibrium between (137)Cs and stable Cs was not reached among those fractions, even though most of the (137)Cs that had been deposited on the soil was derived from fallout weapons tests that occurred several decades ago. The concentration of (137)Cs among the particle-size fractions in each soil was different, whereas the specific activity of (137)Cs in the particle-size fractions had a relatively similar value.  相似文献   

9.
A field study was carried out in the Mercantour Mountains at 2200 m altitude to investigate the processes of soil enrichment in atmospheric Chernobyl (137)Cs. Soils with high (137)Cs activities have been collected in the pasture areas with frequently measured (137)Cs activity values of the order of 7000 Bq m(-2). At some single spots (about 6% of the studied area), activity in soils reached 300000 Bq m(-2), which represents 44% of the (137)Cs of the total area. Data further showed that spatial distribution of Cs depends widely on its origin: Chernobyl Cs is mainly concentrated in "enriched" soils, whereas older Cs and (241)Am fallout from nuclear weapons tests (NWTs) and natural atmospheric (210)Pb in soils is less heterogeneously distributed.In order to elucidate the processes which have led to the enrichment in Chernobyl (137)Cs in the Alps in May of 1986, we have studied the repartition of atmospheric (7)Be isotope (half-life=53.3 d) in the pasture compartments (soil, litter, grass, and snow). Snow (7)Be data give evidence that fallout enrichment is related to snow accumulation (snow drift). The transfer of beryllium occurs rapidly to the grass and litter, where the strongest pollutant accumulations were measured. However, (7)Be transport to the soil required more than 8 months.  相似文献   

10.
To understand the behavior of (137)Cs in undisturbed soils after nuclear fallout deposition between the 1940s and 1980s, we investigated the speciation of (137)Cs in soils in forest and its adjacent grassland from a volcano and subalpine area in Taiwan. We performed sequential extraction of (137)Cs (i.e., fractions readily exchangeable, bound to microbial biomass, bound to Fe-Mn oxides, bound to organic matter, persistently bound and residual). For both the forest and grassland soils, (137)Cs was mainly present in the persistently bound (31-41%) and residual (22-62%) fractions. The proportions of (137)Cs labile fractions--bound to exchangeable sites, microbial biomass, Mn-Fe oxides, and organic matter--were lower than those of the recalcitrant fractions. The labile fractions in the forest soils were also higher than those in the grassland soils, especially in the volcanic soil. The results suggest that the labile form of (137)Cs was mostly transferred to the persistently bound and resistant fractions after long-term deposition of fallout. The readily exchangeable (137)Cs fraction was higher in soils with higher organic matter content or minor amounts of 2:1 silicate clay minerals.  相似文献   

11.
This study aims to screen plant species native to Taiwan that could be used to eliminate (137)Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in (137)Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest (137)Cs transfer factor was used for further examination on the effects of K addition on the transfer of (137)Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest (137)Cs transfer factor among all the tested plants. The transfer of (137)Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy (137)Cs-contaminated soil.  相似文献   

12.
Pot experiments were carried out in a greenhouse to investigate how effectively the transfer of radiocesium and radiostrontium from soil to Chinese cabbage could be reduced by applying K and Ca simultaneously to the soil. The sources of these elements were KCl and Ca(OH)(2) at agrochemical grades. Varying dosages of K and Ca were tested for an acid loamy soil treated with a mixed solution of (137)Cs and (85)Sr at two different times - 3 d before sowing and 32 d after sowing. For the pre-sowing deposition, the soil-to-plant transfer of (137)Cs decreased sharply with increasing dosages of K and Ca (K/Ca, g m(-2)) from 4.8/46 up to 22.4/215 but the (85)Sr transfer had the greatest reduction at a dosage of 12.8/123. At this dosage, an about 60% reduction occurred for each radionuclide. Plant growth was inhibited from the dosage of 22.4/215, above which all the plants died young. Both dosages of 4.8/46 and 12.8/123 tested following the growing-time deposition produced around 95% reductions for (137)Cs and 50% reductions for (85)Sr. In the second year after the 12.8/123 applications, the effects for (85)Sr were almost the same as in the first year, whereas those for (137)Cs were diminished slightly for the pre-sowing deposition and markedly for the growing-time deposition. Considerably (K) or slightly (Ca) higher doses than 12.8/123 would be allowable for the maximum TF reductions achievable without a growth inhibition.  相似文献   

13.
Measurements of soil-to-plant transfer of (134)Cs, (85)Sr and (65)Zn from two tropical red earth soils ('Blain' and 'Tippera') to sorghum and mung crops have been undertaken in the north of Australia. The aim of the study was to identify factors that control bioaccumulation of these radionuclides in tropical regions, for which few previous data are available. Batch sorption experiments were conducted to determine the distribution coefficient (K(d)) of the selected radionuclides at pH values similar to natural pH values, which ranged from about 5.5 to 6.7. In addition, K(d) values were obtained at one pH unit above and below the soil-water equilibrium pH values to determine the effect of pH. The adsorption of Cs showed no pH dependence, but the K(d) values for the Tippera soils (2300-4100 ml/g) exceeded those for the Blain soils (800-1200 ml/g) at equilibrium pH. This was related to the greater clay content of the Tippera soil. Both Sr and Zn were more strongly adsorbed at higher pH values, but the K(d) values showed less dependence on the soil type. Strontium K(d)s were 30-60 ml/g whilst Zn ranged from 160 to 1630 ml/g for the two soils at equilibrium pH. With the possible exception of Sr, there was no evidence for downward movement of radionuclides through the soils during the course of the growing season. There was some evidence of surface movement of labelled soil particles. Soil-to-plant transfer factors varied slightly between the soils. The average results for sorghum were 0.1-0.3 g/g for Cs, 0.4-0.8 g/g for Sr and 18-26 g/g for Zn (dry weight) with the initial values relating to Blain and the following values to Tippera. Similar values were observed for the mung bean samples. The transfer factors for Cs and Sr were not substantially different from the typical values observed in temperate studies. However, Zn transfer factors for plants grown on both these tropical soils were greater than for soils in temperate climates (by more than an order of magnitude). This may be related to trace nutrient deficiency and/or the growth of fungal populations in these soils. The results indicate that transfer factors depend on climatic region together with soil type and chemistry and underline the value of specific bioaccumulation data for radionuclides in tropical soils.  相似文献   

14.
Studies were made during 1990-1997 on the transfer of 137Cs from soil to vegetation (herbage) and to grazing lambs on a mountain farm with an uncultivated grazing area of about 10 km2. The farm is situated in an area in Northern Sweden which was contaminated by the Chernobyl fallout in 1986. The mean concentration of 137Cs in the soil to a depth of 10 cm for eight sampling sites observed in the 8-year period was 14.51 kBq/m2, while in the cut herbage the average concentration was 859 Bq/kg d.w. and in lamb meat 682 Bq/kg w.w. A slow vertical migration of 137Cs in the 0-10 cm soil layer was indicated. Although the 137Cs concentration in herbage gradually decreased, the concentration in lamb meat varied from year to year. Soil ingestion by the lambs as a pathway for activity transfer was shown to be negligible, while ingestion of fungi with high concentrations of 137Cs was demonstrated to occur, as large numbers of fungi spores were counted in samples of the lambs' faeces. Fungi ingestion might therefore partly explain the varying mean yearly 137Cs concentrations in lamb muscle. The mean transfer parameters were as follows: for "soil to herbage" 61.3 Bq/kg d.w. herbage per kBq/m2 soil, for "herbage to lamb meat" 0.81 Bq/kg w.w. meat per Bq/kg d.w. herbage, and for "soil to lamb meat" 47.1 Bq/kg w.w. meat per kBq/m2 soil. A trend of decreasing values of the transfer parameter for "soil to herbage" indicated that 137Cs was becoming less available for root-uptake with time. The effective ecological half-life of 137Cs in soil, herbage and lamb meat was calculated to be 19, 7 and 16 years, respectively. It can be concluded that natural areas are vulnerable to 137Cs contamination, resulting in high concentrations in plants, fungi and lamb meat for a long time.  相似文献   

15.
The association of radiocaesium with particle size fractions separated by sieving and settling from soils sampled eight years after the Chernobyl accident has been determined. The three size fractions were: <2 microm, 2-63 microm and >63 microm. 137Cs in the soil samples was associated essentially with the finer size fractions, which generally showed specific activities 3-5 times higher than the bulk samples. Activity ratios of 134Cs/137Cs in the clay-sized fractions appear to be lower with respect to the corresponding values in bulk soil samples. This result indicates that some differences still exists in the particle size distribution between 137Cs originating from nuclear weapons, which has been in the soil for decades after fallout, and 137Cs coming from the Chernobyl accident, eight years after the deposition event. This behaviour could be related to "ageing" processes of radiocaesium in soils.  相似文献   

16.
Inventories of fallout (210)Pb and (137)Cs have been measured in moorland and woodland soils around the Edinburgh urban area, using a high purity germanium detector. The (210)Pb inventories in moorland soils were relatively uniform, with a mean value of 2520+/-270Bqm(-2). The mean (137)Cs inventory in moorland soils varied greatly from 1310 to 2100Bqm(-2), with a mean value of 1580+/-310Bqm(-2). The variability was ascribed mainly to the non-uniform distribution of fallout Chernobyl (137)Cs. The mean (210)Pb and (137)Cs inventories in woodland canopy soils were found to be 3630+/-380Bqm(-2) and 2510+/-510Bqm(-2), respectively. At sites for which both moorland and woodland data were available, the mean inventories provided fairly similar average enhancements of (47+/-7)% and (46+/-18)% of (210)Pb and (137)Cs under woodland canopy soils relative to open grassland soils, respectively. The enhancement factors are broadly in line with other independent findings in literature. Enhancement of both (210)Pb and (137)Cs in woodland soils relative to moorland soils is, in part, due to deposition by impaction during air turbulence, wash-off, gravitational settling and deposition during leaf senescence. Results of this study suggest that these processes affect both (210)Pb and (137)Cs carrier aerosols in a similar way.  相似文献   

17.
There is a need for soil-to-plant transfer factors of radionuclides that take into account all possible crops on all soil varieties to support dose assessment studies. Because only limited experimental data exist for worldwide soil systems, such values should necessarily have a generic character. This paper describes a generic system for 137Cs, mainly based on a reference soil-to-plant transfer factor which depends solely on soil properties such as nutrient status, exchangeable K-content, pH and moisture content. Crops are divided into crop groups, cereals serving as reference group. The transfer of other crop groups can be calculated by multiplying data for cereals by a conversion factor. Existing data present in the IUR (International Union of Radioecologists) databank and in large part the work of a FAO (Food and Agriculture Organisation)/IAEA(International Atomic Energy Agency)/IUR project on tropical systems provided the basis for the derivation of the conversion factors and reference values.  相似文献   

18.
(137)Cs is an artificial radionuclide with a half-life of 30.12 years which released into the environment as a result of atmospheric testing of thermo-nuclear weapons primarily during the period of 1950s-1970s with the maximum rate of (137)Cs fallout from atmosphere in 1963. (137)Cs fallout is strongly and rapidly adsorbed by fine particles in the surface horizons of the soil, when it falls down on the ground mostly with precipitation. Its subsequent redistribution is associated with movements of the soil or sediment particles. The (137)Cs nuclide tracing technique has been used for assessment of soil losses for both undisturbed and cultivated soils. For undisturbed soils, a simple profile-shape model was developed in 1990 to describe the (137)Cs depth distribution in profile, where the maximum (137)Cs occurs in the surface horizon and it exponentially decreases with depth. The model implied that the total (137)Cs fallout amount deposited on the earth surface in 1963 and the (137)Cs profile shape has not changed with time. The model has been widely used for assessment of soil losses on undisturbed land. However, temporal variations of (137)Cs depth distribution in undisturbed soils after its deposition on the ground due to downward transport processes are not considered in the previous simple profile-shape model. Thus, the soil losses are overestimated by the model. On the base of the erosion assessment model developed by Walling, D.E., He, Q. [1999. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality 28, 611-622], we discuss the (137)Cs transport process in the eroded soil profile and make some simplification to the model, develop a method to estimate the soil erosion rate more expediently. To compare the soil erosion rates calculated by the simple profile-shape model and the simple transport model, the soil losses related to different (137)Cs loss proportions of the reference inventory at the Kaixian site of the Three Gorge Region, China are estimated by the two models. The over-estimation of the soil loss by using the previous simple profile-shape model obviously increases with the time period from the sampling year to the year of 1963 and (137)Cs loss proportion of the reference inventory. As to 20-80% of (137)Cs loss proportions of the reference inventory at the Kaixian site in 2004, the annual soil loss depths estimated by the new simplified transport process model are only 57.90-56.24% of the values estimated by the previous model.  相似文献   

19.
In this study, soil to plant transfer factor values were determined for 137Cs and 60Co in radish (Raphanus sativus), maize (Zea mays L.) and cabbage (Brassica oleracea L. var. capitata) growing in gibbsite-, kaolinite- and iron-oxide-rich soils. After 3 years of experiment in lysimeters it was possible to identify the main soil properties able to modify the soil to plant transfer processes, e.g. exchangeable K and pH, for 137Cs, and organic matter for 60Co. Results of sequential chemical extraction were coherent with root uptake and allowed the recognition of the role of iron oxides on 137Cs behaviour and of Mn oxides on 60Co behaviour. This information should provide support for adequate choices of countermeasures to be applied on tropical soils in case of accident or for remediation purposes.  相似文献   

20.
This work studies the dependence of 137Cs root uptake on the structure of landscape, especially on texture and moisture of soils, under natural conditions, on abandoned radiopolluted lands in Northern Ukraine. Researches were carried out on a wide range of landscape conditions, at various levels of 137Cs contamination (from 20 up to 5000 kBqm(-2)), with different types of soils (approx. 20 soil varieties), which differ in texture, granulometric composition, degrees of gleyization and water regime, and anthropogenic transformation. The results showed that transfer factor (TF) values of 137Cs differ 50 times for the natural grassy coenoses and 8 times for the semi-natural ones. The lowest 137Cs TF values were measured in the herbages of dry meadows at automorphous loamy soils, while the highest were observed in wetland meadows at organic soils. Finally, the correlation between 137Cs TF values and granulometric composition of soil was determined for both automorphic and hydromorphic mineral soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号