共查询到20条相似文献,搜索用时 15 毫秒
1.
Changjie Zhou Huili Zhu Weifeng Yang Qiubao Lin Tongchang Zheng Lan Yang Shuqiong Lan 《Frontiers of Physics》2022,17(5):53500
Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures. 相似文献
2.
3.
Influence of different oxidants on the band alignment of HfO<sub>2</sub> films deposited by atomic layer deposition
下载免费PDF全文

Based on X-ray photoelectron spectroscopy(XPS),influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition(ALD) are investigated in this paper.The measured valence band offset(VBO) value for H2 O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing,whereas the VBO value for O 3-based HfO2 decreases from 3.57 eV to 3.46 eV.The research results indicate that the silicate layer changes in different ways for H2 O-based and O3-based HfO2 films after the annealing process,which plays a key role in generating the internal electric field formed by the dipoles.The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2 O-based and O 3-based HfO2 to vary in different ways,which fits with the variation of flat band(VFB) voltage. 相似文献
4.
Influence of different oxidants on the band alignment of HfO2 films deposited by atomic layer deposition
下载免费PDF全文

Based on X-ray photoelectron spectroscopy (XPS), influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper. The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing, whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV. The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after the annealing process, which plays a key role in generating the internal electric field formed by the dipoles. The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lewd the VBO values of H2O-based and O3-based HfO2 to vary in different ways, which fits with the variation of fiat band (VFB) voltage. 相似文献
5.
The most important interface-related quantities determined by band alignment are the barrier heights for charge transport, given by the Fermi level position at the interface. Taking Pb(Zr,Ti)O3(PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy(XPS), we briefly review the interface formation and barrier heights at the interfaces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS. 相似文献
6.
7.
8.
采用基于色散修正的平面波超软赝势方法研究了二硫化钼/石墨烯异质结的界面结合作用及其对电荷分布和带边电位的影响.研究表明二硫化钼与石墨烯之间可以形成范德瓦耳斯力结合的稳定堆叠结构.通过能带结构计算,发现二硫化钼与石墨烯的耦合导致二硫化钼成为n型半导体,石墨烯转变成小带隙的p型体系.并通过电子密度差分图证实了界面内二硫化钼附近聚集负电荷,石墨烯附近聚集正电荷,界面内形成的内建电场可以抑制光生电子-空穴对的复合.石墨烯的引入可以调制二硫化钼的能带,使其导带底上移至-0.31 eV,提高了光生电子还原能力,有利于光催化还原反应. 相似文献
9.
Based on X-ray photoelectron spectroscopy (XPS), influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper. The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing, whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV. The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after annealing process, which plays a key role in generating the internal electric field formed by the dipoles. The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2O-based and O3-based HfO2 to vary in different ways, which is in agreement with the varition of flat band (VFB) voltage. 相似文献
10.
11.
The ε-Ga2O3 p-n heterojunctions (HJ) have been demonstrated using typical p-type oxide semiconductors (NiO or SnO). The ε-Ga2O3 thin film was heteroepitaxial grown by metal organic chemical vapor deposition (MOCVD) with three-step growth method. The polycrystalline SnO and NiO thin films were deposited on the ε-Ga2O3 thin film by electron-beam evaporation and thermal oxidation, respectively. The valence band offsets (VBO) were determined by x-ray photoelectron spectroscopy (XPS) to be 2.17 eV at SnO/ε-Ga2O3 and 1.7 eV at NiO/ε-Ga2O3. Considering the bandgaps determined by ultraviolet-visible spectroscopy, the conduction band offsets (CBO) of 0.11 eV at SnO/ε-Ga2O3 and 0.44 eV at NiO/ε-Ga2O3 were obtained. The type-Ⅱ band diagrams have been drawn for both p-n HJs. The results are useful to understand the electronic structures at the ε-Ga2O3 p-n HJ interface, and design optoelectronic devices based on ε-Ga2O3 with novel functionality and improved performance. 相似文献
12.
Lin Tang Meng-Qi Cheng Qing Chen Tao Huang Ke Yang Wei-Qing Huang Wangyu Hu Gui-Fang Huang 《physica status solidi b》2020,257(3):1900445
13.
《中国物理 B》2021,30(10):106807-106807
Two-dimensional monolayer copper selenide(Cu Se) has been epitaxially grown and predicted to host the Dirac nodal line fermion(DNLF). However, the metallic state of monolayer Cu Se inhibits the potential application of nanoelectronic devices in which a band gap is needed to realize on/off properties. Here, we engineer the band structure of monolayer Cu Se which is an analogue of a p-doped system via external atomic modification in an effort to realize the semiconducting state.We find that the H and Li modified monolayer Cu Se shifts the energy band and opens an energy gap around the Fermi level.Interestingly, both the atomic and electronic structures of monolayer Cu HSe and Cu Li Se are very different. The H atoms bind on top of Se atoms of monolayer Cu Se with Se–H polar covalent bonds, annihilating the DNLF band of monolayer Cu Se dominated by Se orbitals. In contrast, Li atoms prefer to adsorb at the hexagonal center of Cu Se, preserving the DNLF band of monolayer Cu Se dominated by Se orbitals, but opening band gaps due to a slight buckling of the Cu Se layer. The realization of metal-to-semiconductor transition from monolayer Cu Se to Cu X Se(X = H, Li) as revealed by first-principles calculations makes it possible to use Cu Se in future electronic devices. 相似文献
14.
Density functional (B3LYP) calculations have been performed to investigate the adsorption of molecule on the surface of cluster (PbTe)4. To study the influence of point defects (namely, impurity atoms and cation and anion vacancies) on the reactivity of PbTe surface, clusters (PbTe)3GeTe, (PbTe)3GaTe, (PbTe)3Te, and (PbTe)3(Pb) were investigated. The adsorption of oxygen on the surface of (PbS)4 cluster was calculated to evaluate the role of anions in the adsorption process. It was shown that the formation of the peroxide-like complex is the first step of adsorption. The calculated tendency to surface oxidation increases in sequence: PbTe with cation vacancies <PbS < pure PbTe < PbTe doped with Ga < PbTe doped with Ge < PbTe with anion vacancies. The results of quantum-chemical calculations correlate with X-ray photoelectron spectroscopy data. 相似文献
15.
We have studied the band structure and the band gap closure in phase I of solid iodine under high pressure, using the methods based on the quasiparticle theory, i.e. GW approximation. Our calculations show that the band gap in the Cmca structure, which is the structure of the phase I of solid iodine, closes around 20 GPa. This pressure is near the upper boundary of phase I. We discuss the possible metallic transition in the molecular phase of solid iodine and the possible changes of the crystal structure. 相似文献
16.
A. Samariya Sudhish Kumar S.C. Sharma D.C. Jain U.P. Deshpande E. Saitovitch 《Applied Surface Science》2010,257(2):585-590
Influence of Co doping for In in In2O3 matrix has been investigated to study the effect on magnetic vs. electronic properties. Rietveld refinement of X-ray diffraction patterns confirmed formation of single phase cubic bixbyite structure without any parasitic phase. Photoelectron spectroscopy and refinement results further revealed that dopant Co2+ ions are well incorporated at the In3+ sites in In2O3 lattice and also ruled out formation of cluster in the doped samples. Magnetization measurements infer that pure In2O3 is diamagnetic and turns to weak ferromagnetic upon Co doping. Hydrogenation further induces a huge ferromagnetism at 300 K that vanishes upon re-heating. Experimental findings confirm the induced ferromagnetism to be intrinsic, and the magnetic moments to be associated with the point defects (oxygen vacancies Vo) or bound magnetic polarons around the dopant ions. 相似文献
17.
Core-shell nanostructures were grown in silica-based glasses. Copper-copper oxide and iron-iron oxide structures had diameters in the range 3-6 nm, with shell thicknesses ∼1-2 nm. Silver-lithium niobate core-shell nanostructures had diameters in the range 4.2-46 nm and thicknesses varying from 2.2 to 22 nm. X-ray photoelectron spectroscopy studies were carried out on all these specimens. The analyses of these results show the presence of Cu+/Cu2+, Fe2+/Fe3+ and Nb4+/Nb5+ valence states in the above three systems. Electrical resistivity data were fitted satisfactorily to the small polaron hopping model in the case of copper and iron-containing specimens. The presence of ions in the lithium niobate shell provides direct evidence of the formation of localized states between which variable range hopping conduction can be effected. 相似文献
18.
The effects of Mg K X-rays on furan overlayers on the Ru(001) surface have been investigated using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). It was found that X-ray beams can polymerize furan multilayers condensed at 80 K, resulting in the appearance of new emission features at 532.8 eV in the O 1s XPS spectra and at 3 eV in the UPS spectra. In contrast, monolayer furan on Ru(001) at 80 K shows no signs of polymerization under the same conditions. 相似文献
19.
The electronic structures of ferroelastic lithium titanium germanate are investigated by first-principles method. The structure changes caused by the phase transition are discussed. It is shown that the orthorhombic structure is more stable than the tetragonal structure. The remarkable ferroelastic property largely originates from the Ge–O hybridization, which is enhanced by the Ti–O hybridization. The effective density and potential shows the changes of atoms bonding accompanying the ferroelastic phase transition. 相似文献
20.
Shreyas S. Pitale 《Applied Surface Science》2011,257(8):3298-3306
Luminescence characteristics and surface chemical changes of nanocrystalline Mn2+ doped ZnAl2O4 powder phosphors are presented. Stable green cathodoluminescence (CL) or photoluminescence (PL) with a maximum at ∼512 nm was observed when the powders were irradiated with a beam of high energy electrons or a monochromatic xenon lamp at room temperature. This green emission can be attributed to the 4T1 → 6A1 transitions of the Mn2+ ion. Deconvoluted CL spectra resulted in two additional emission peaks at 539 and 573 nm that may be attributed to vibronic sideband and Mn4+ emission, respectively. The luminescence decay of the Mn2+ 512 nm emission under 457 nm excitation is single exponential with a lifetime of 5.20 ± 0.11 ms. Chemical changes on the surface of the ZnAl2O4:Mn2+ phosphor during prolonged electron beam exposure were monitored using Auger electron spectroscopy. The X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition of the possible compounds formed on the surface as a result of the prolonged electron beam exposure. The XPS data suggest that the thermodynamically stable Al2O3 layer was formed on the surface and is possibly contributing to the CL stability of ZnAl2O4:Mn phosphor. 相似文献