首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
危阳  马新国  祝林  贺华  黄楚云 《物理学报》2017,66(8):87101-087101
采用基于色散修正的平面波超软赝势方法研究了二硫化钼/石墨烯异质结的界面结合作用及其对电荷分布和带边电位的影响.研究表明二硫化钼与石墨烯之间可以形成范德瓦耳斯力结合的稳定堆叠结构.通过能带结构计算,发现二硫化钼与石墨烯的耦合导致二硫化钼成为n型半导体,石墨烯转变成小带隙的p型体系.并通过电子密度差分图证实了界面内二硫化钼附近聚集负电荷,石墨烯附近聚集正电荷,界面内形成的内建电场可以抑制光生电子-空穴对的复合.石墨烯的引入可以调制二硫化钼的能带,使其导带底上移至-0.31 eV,提高了光生电子还原能力,有利于光催化还原反应.  相似文献   

2.
Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures.  相似文献   

3.
陈峰  吴文彬  李舜怡  Andreas Klein 《中国物理 B》2014,23(1):17702-017702
The most important interface-related quantities determined by band alignment are the barrier heights for charge transport, given by the Fermi level position at the interface. Taking Pb(Zr,Ti)O3(PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy(XPS), we briefly review the interface formation and barrier heights at the interfaces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS.  相似文献   

4.
Based on X-ray photoelectron spectroscopy (XPS), influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper. The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing, whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV. The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after annealing process, which plays a key role in generating the internal electric field formed by the dipoles. The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2O-based and O3-based HfO2 to vary in different ways, which is in agreement with the varition of flat band (VFB) voltage.  相似文献   

5.
A high-quality Ga2O3 thin film is deposited on an SiC substrate to form a heterojunction structure. The band alignment of the Ga2O3/6H-SiC heterojunction is studied by using synchrotron radiation photoelectron spectroscopy. The energy band diagram of the Ga2O3/6H-SiC heterojunction is obtained by analysing the binding energies of Ga 3d and Si 2p at the surface and the interface of the heterojunction. The valence band offset is experimentally determined to be 2.8 eV and the conduction band offset is calculated to be 0.89 eV, which indicate a type-II band alignment. This provides useful guidance for the application of Ga2O3/6H-SiC electronic devices.  相似文献   

6.
Based on X-ray photoelectron spectroscopy (XPS), influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper. The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing, whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV. The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after the annealing process, which plays a key role in generating the internal electric field formed by the dipoles. The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lewd the VBO values of H2O-based and O3-based HfO2 to vary in different ways, which fits with the variation of fiat band (VFB) voltage.  相似文献   

7.
Based on X-ray photoelectron spectroscopy(XPS),influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition(ALD) are investigated in this paper.The measured valence band offset(VBO) value for H2 O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing,whereas the VBO value for O 3-based HfO2 decreases from 3.57 eV to 3.46 eV.The research results indicate that the silicate layer changes in different ways for H2 O-based and O3-based HfO2 films after the annealing process,which plays a key role in generating the internal electric field formed by the dipoles.The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2 O-based and O 3-based HfO2 to vary in different ways,which fits with the variation of flat band(VFB) voltage.  相似文献   

8.
吴木生  徐波  刘刚  欧阳楚英 《物理学报》2012,61(22):387-391
采用密度泛函理论框架下的第一性原理平面波赝势方法,研究了双轴拉应变下单层二硫化钼晶体的电子结构性质.本文的计算结果表明对单层二硫化钼晶体施加一个很小的应变(0.5%)时,其能带结构由直接带隙转变为间接带隙.随着应变的增加,能带仍然保持间接带隙的特征,且禁带宽度呈现线性下降的趋势.通过对单层二硫化钼晶体态密度和投影电荷密度的进一步分析,揭示了单层二硫化钼晶体能带变化的原因.  相似文献   

9.
采用基于密度泛函理论的第一性原理计算,研究了Te掺杂对单层MoS2能带结构、电子态密度和光电性质的影响。结果表明,本征单层MoS2属于直接带隙半导体材料,其禁带宽度为1.64 eV。本征单层MoS2的价带顶主要由S-3p态电子和Mo-4d态电子构成,而其导带底则主要由Mo-4d态电子和S-3p态电子共同决定;Te掺杂单层MoS2为间接带隙半导体材料,其禁带宽度为1.47 eV。同时通过Te掺杂,使单层MoS2的静态介电常数增大,禁带宽度变窄,吸收光谱产生红移,研究结果为单层MoS2在光电器件方面的应用提供了理论基础。  相似文献   

10.
X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated (0 0 1) surfaces of AgCd2GaS4 and AgCd2GaSe4 single crystals grown, respectively, by the Bridgman method and the method of direct crystallization have been measured in the present work. The X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of (0 0 1) surfaces of AgCd2GaS4 and AgCd2GaSe4 single crystals. Electronic structure of AgCd2GaS4 has been calculated employing the full potential linearized augmented plane wave method. For the AgCd2GaS4 compound, the X-ray emission bands representing the energy distribution of the valence Ag d-, Cd d-, Ga p- and S p-like states were recorded and compared on a common energy scale with the XPS valence-band spectrum. The theoretical and experimental data regarding the occupation of the valence band of AgCd2GaS4 were found to be in excellent agreement to each other. Second harmonic generation (SHG) efficiency of AgCd2GaS4 by using the 320 ns CO laser at 5.5 μm has been recorded within the temperature range 80–300 K. Substantial increase of the photoinduced SHG which in turn is substantially dependent on the temperature has been detected for the AgCd2GaS4 compound.  相似文献   

11.
Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moiré superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.  相似文献   

12.
魏晓旭  程英  霍达  张宇涵  王军转  胡勇  施毅 《物理学报》2014,63(21):217802-217802
二硫化钼(MoS2)是一种层状的二维过渡金属硫族化合物材料,从块体到单层,禁带由间接带隙变为直接带隙,由于通常机械剥落的单层MoS2是n型掺杂的,使得其发光效率仍然很低. 在本文中,采用匀胶机旋涂的方法将共振吸收峰在514 nm附近的纳米金颗粒尽可能均匀的铺在单层、双层以及多层的MoS2样品表面,发现单层和双层样品的光致发光谱(PL谱)分别增强了约30倍和2倍同时伴随着峰位的蓝移,而多层样品的发光强度也略有增强. 拉曼特性揭示了纳米金颗粒对单层和双层MoS2样品产生了明显的p型掺杂,从而增强了发光;同时纳米金颗粒的表面等离子激元效应对激发光的天线作用也是增强MoS2的光致发光的一个因素. 关键词: 二硫化钼 光致发光 p型掺杂 Au纳米颗粒  相似文献   

13.
Constructing two-dimensional (2D) van der Waals heterostructures (vdWHs) can expand the electronic and optoelectronic applications of 2D semiconductors. However, the work on the 2D vdWHs with robust band alignment is still scarce. Here, we employ a global structure search approach to construct the vdWHs with monolayer MoSi2N4 and wide-bandgap GeO2. The studies show that the GeO2/MoSi2N4 vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and type-II band alignment with GeO2 and MoSi2N4 layers as the conduction band minimum (CBM) and valence band maximum (VBM), respectively. Also, the direct-to-indirect band gap transition can be achieved by applying biaxial strain. In particular, the 2D GeO2/MoSi2N4 vdWHs show a robust type-II band alignment under the effects of biaxial strain, interlayer distance and external electric field. The results provide a route to realize the robust type-II band alignment vdWHs, which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.  相似文献   

14.
董艳芳  何大伟  王永生  许海腾  巩哲 《物理学报》2016,65(12):128101-128101
最近单层二硫化钼以其直接带隙的性质及在电子器件、催化、光电等领域中的潜在应用而备受关注.化学气相沉积法能够制备出高质量、大尺寸且性能优良的单层二硫化钼,但其制备工艺比较复杂.本文采用简化的化学气相沉积法在蓝宝石衬底上制备出了大尺寸的单晶二硫化钼.清洗衬底时,只需要简单的清洁,不需要用丙酮、食人鱼溶液(H_2SO_4/H_2O_2=3:1)等处理,这样既减少了操作步骤,又避免了潜在的危险.升温时直接从室温加热到生长的温度,不必分段升温,并且采用常压化学气相沉积法,不需要抽真空等过程,使得实验可以快捷方便地进行.光学显微镜、拉曼光谱和光致发光谱的结果表明,生长的二硫化钼为规则的三角形单层,边长为50μm左右,远大于机械剥离的样品.  相似文献   

15.
Co-doped ZnO-Ga2O3-SiO2 nano-glass-ceramic composites were prepared by sol-gel method. X-ray diffraction patterns showed that the crystallization temperature was 800 °C. X-ray photoelectron spectroscopy (XPS) was used to study the effect of heat-treatment temperature on the electronic structure of Co-doped ZnO-Ga2O3-SiO2 nano-glass-ceramic composites. The Zn (2p3/2), Ga (2p3/2) and O (1s) XPS spectra for the glass-ceramics heat-treated at 800-1000 °C could be deconvoluted into two peaks corresponding to these elements in glass network and in nanocrystals, respectively. The results indicate that the material is composed of an amorphous silicate network and ZnGa2O4 nanocrystalline particles. The amount of nanocrystals increases with the annealing temperature. The photoelectron peak of Si (2p) shifts to higher binding energy at higher annealing temperature, revealing the charge transfer from Si to O increased. The relationship between the microstructure of Co-doped ZnO-Ga2O3-SiO2 sample and its absorption properties was discussed, and the suitable heat-treatment temperature was proposed.  相似文献   

16.
X-ray photoelectron spectroscopy has been used to study mineral molybdenite, MoS2. The fitted core level spectra of sulphur 2p and molybdenum 3d states reveal several photon energy sensitive components. The high binding energy component in both spectra is proposed to originate from the uppermost sulphur or molybdenum atoms of an S–Mo–S sandwich layer of the hexagonal structure, respectively. The other features are suggested to be caused by the edge structures formed during the sample cleavage. The edge facets have much stronger chemical properties than the basal planes and they are known as the active sites of MoS2 when it is used as a catalyst. The spectral features and the effect of the structure of UHV cleaved MoS2 on them are discussed.  相似文献   

17.
MoS2是一种具有优异光电性能和奇特物理性质的二维材料,在电子器件领域具有巨大的应用潜力.高效可控生长出大尺寸单晶MoS2是该材料进入产业应用所必须克服的重大难关,而化学气相沉积技术被认为是工业化生产二维材料的最有效手段.本文介绍了一种利用磁控溅射预沉积钼源至熔融玻璃上,通过快速升温的化学气相沉积技术生长出尺寸达1 mm的单晶MoS2的方法,并通过引入WO3粉末生长出了二硫化钼与二硫化钨的横向异质结(WS2-MoS2).拉曼和荧光光谱仪测试表明所生长的样品具有较好的晶体质量.利用转移电极技术制备出了背栅器件样品并对其进行了电学测试,在室温常压下开关比可达10~5,迁移率可达4.53 cm~2/(V·s).这种低成本高质量的大尺寸材料生长方法为二维材料电子器件的大规模应用找到了出路.  相似文献   

18.
Influence of Co doping for In in In2O3 matrix has been investigated to study the effect on magnetic vs. electronic properties. Rietveld refinement of X-ray diffraction patterns confirmed formation of single phase cubic bixbyite structure without any parasitic phase. Photoelectron spectroscopy and refinement results further revealed that dopant Co2+ ions are well incorporated at the In3+ sites in In2O3 lattice and also ruled out formation of cluster in the doped samples. Magnetization measurements infer that pure In2O3 is diamagnetic and turns to weak ferromagnetic upon Co doping. Hydrogenation further induces a huge ferromagnetism at 300 K that vanishes upon re-heating. Experimental findings confirm the induced ferromagnetism to be intrinsic, and the magnetic moments to be associated with the point defects (oxygen vacancies Vo) or bound magnetic polarons around the dopant ions.  相似文献   

19.
郭丽娟  胡吉松  马新国  项炬 《物理学报》2019,68(9):97101-097101
采用第一性原理方法研究了二硫化钨/石墨烯异质结的界面结合作用以及电子性质,结果表明在二硫化钨/石墨烯异质结中,其界面相互作用是微弱的范德瓦耳斯力.能带计算结果显示异质结中二硫化钨和石墨烯各自的电子性质得到了保留,同时,由于石墨烯的结合作用,二硫化钨呈现出n型半导体.通过改变界面的层间距可以调控二硫化钼/石墨烯异质结的肖特基势垒类型,层间距增大,肖特基将从p型转变为n型接触.三维电荷密度差分图表明,负电荷聚集在二硫化钨附近,正电荷聚集在石墨烯附近,从而在界面处形成内建电场.肖特基势垒变化与界面电荷流动密切相关,平面平均电荷密度差分图显示,随着层间距逐渐增大,界面电荷转移越来越弱,且空间电荷聚集区位置向石墨烯层方向靠近,导致费米能级向上平移,证实了肖特基势垒随着层间距的增加由p型接触向n型转变.本文的研究结果将为二维范德瓦耳斯场效应管的设计与制作提供指导.  相似文献   

20.
Variation in the nature of multi-walled carbon nanotubes (MWCNTs) subjected to different degrees of oxidation was investigated. The microstructure was determined by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) methods, and the surface chemistry was evaluated in terms of the functional groups determined by X-ray photoelectron spectroscopy (XPS) and thermal analysis-mass spectroscopy (TA-MS). In addition, TGA was used to indicate the thermal stability of the nanotubes. Results demonstrate that the graphitic structure of nanotubes oxidized with a mild mixture of H2SO4/HNO3 was preserved. Decrease in the degree of crystallinity started with widening of the C(0 0 2) XRD diffraction peak, followed by this peak shifting towards lower angles. The oxygen content increased with increasing treatment time. A defect peak incorporated in deconvolution of XPS C1s spectra was helpful for detecting the generation of defect sites. The predominant surface functionalities of the nanotubes have been changed from basic to acidic groups after treatment for one day. The samples oxidized for two days had the most abundant surface -COOH and the highest oxidation resistance. The oxidation mechanism of MWCNTs in mild H2SO4/HNO3 mixture was proposed, which was a successive and iterative process, including the initial attack on active sites, and next the hexagon electrophilic attack generating new defects and introducing more oxygen, and then the tubes becoming thinner and shorter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号