首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Contour reconstruction in 3-D X-ray CT   总被引:2,自引:0,他引:2  
The authors derives an algorithm for reconstructing contours of an object from 3D cone beam X-ray data. By reducing the amount of the searched-for information, contours, or density jumps instead of the densities themselves, the authors are able to develop fast algorithms for data incomplete with respect to both the movement of the X-ray source and the detector reading. The method is related to local or Lambda tomography. Numerical simulations show the efficiency of the algorithm.  相似文献   

2.
Tissue perfusion measurement during catheter-guided stroke treatment in the interventional suite is currently not possible. In this work, we present a novel approach that uses a C-arm angiography system capable of computed tomography (CT)-like imaging (C-arm CT) for this purpose. With C-arm CT one reconstructed volume can be obtained every 4-6 s which makes it challenging to measure the flow of an injected contrast bolus. We have developed an interleaved scanning (IS) protocol that uses several scan sequences to increase temporal sampling. Using a dedicated 4-D reconstruction approach based on partial reconstruction interpolation (PRI) we can optimally process our data. We evaluated our combined approach (IS-PRI) with simulations and a study in five healthy pigs. In our simulations, the cerebral blood flow values (unit: ml/100 g/min) were 60 (healthy tissue) and 20 (pathological tissue). For one scan sequence the values were estimated with standard deviations of 14.3 and 2.9, respectively. For two interleaved sequences the standard deviations decreased to 3.6 and 1.5, respectively. We used perfusion CT to validate the in vivo results. With two interleaved sequences we achieved promising correlations ranging from r=0.63 to r=0.94. The results suggest that C-arm CT tissue perfusion imaging is feasible with two interleaved scan sequences.  相似文献   

3.
The radial derivative of the three-dimensional (3-D) radon transform of an object is an important intermediate result in many analytically exact cone-beam reconstruction algorithms. The authors briefly review Grangeat's (1991) approach for calculating radon derivative data from cone-beam projections and then present a new, efficient method for 3-D radon inversion, i.e., reconstruction of the image from the radial derivative of the 3-D radon transform, called direct Fourier inversion (DFI). The method is based directly on the 3-D Fourier slice theorem. From the 3-D radon derivative data, which is assumed to be sampled on a spherical grid, the 3-D Fourier transform of the object is calculated by performing fast Fourier transforms (FFTs) along radial lines in the radon space. Then, an interpolation is performed from the spherical to a Cartesian grid using a 3-D gridding step in the frequency domain. Finally, this 3-D Fourier transform is transformed back to the spatial domain via 3-D inverse FFT. The algorithm is computationally efficient with complexity in the order of N 3 log N. The authors have done reconstructions of simulated 3-D radon derivative data assuming sampling conditions and image quality requirements similar to those in medical computed tomography (CT)  相似文献   

4.
Interior-point methodology for 3-D PET reconstruction   总被引:1,自引:0,他引:1  
Interior-point methods have been successfully applied to a wide variety of linear and nonlinear programming applications. This paper presents a class of algorithms, based on path-following interior-point methodology, for performing regularized maximum-likelihood (ML) reconstructions on three-dimensional (3-D) emission tomography data. The algorithms solve a sequence of subproblems that converge to the regularized maximum likelihood solution from the interior of the feasible region (the nonnegative orthant). We propose two methods, a primal method which updates only the primal image variables and a primal-dual method which simultaneously updates the primal variables and the Lagrange multipliers. A parallel implementation permits the interior-point methods to scale to very large reconstruction problems. Termination is based on well-defined convergence measures, namely, the Karush-Kuhn-Tucker first-order necessary conditions for optimality. We demonstrate the rapid convergence of the path-following interior-point methods using both data from a small animal scanner and Monte Carlo simulated data. The proposed methods can readily be applied to solve the regularized, weighted least squares reconstruction problem.  相似文献   

5.
In the framework of computer-aided diagnosis, this paper proposes a novel functionality for the computerized tomography (CT)-based investigation of the pulmonary airways. It relies on an energy-based three-dimensional (3-D) reconstruction of the bronchial tree from multislice CT acquisitions, up to the sixth- to seventh-order subdivisions. Global and local analysis of the reconstructed airways is possible by means of specific visualization modalities, respectively, the CT bronchography and the virtual bronchoscopy. The originality of the 3-D reconstruction approach consists in combining axial and radial propagation potentials to control the growth of a subset of low-order airways extracted from the CT volume by means of a robust mathematical morphology operator-the selective marking and depth constrained (SMDC) connection cost. The proposed approach proved to be robust with respect to a large spectrum of airway pathologies, including even severe stenosis (bronchial lumen obstruction/collapse). Validated by expert radiologists, examples of airway 3-D reconstructions are presented and discussed for both normal and pathological cases. They highlight the interest in considering CT bronchography and virtual bronchoscopy as complementary tools for clinical diagnosis and follow-up of airway diseases.  相似文献   

6.
In this letter, the limitation of the conventional Lambertian reflectance model is addressed and a new neural-based reflectance model is proposed of which the physical parameters of the reflectivity under different lighting conditions are interpreted by the neural network behavior of the nonlinear input-output mapping. The idea of this method is to optimize a proper reflectance model by a neural learning algorithm and to recover the object surface by a simple shape-from-shading (SFS) variational method with this neural-based model. A unified computational scheme is proposed to yield the best SFS solution. This SFS technique has become more robust for most objects, even when the lighting conditions are uncertain.  相似文献   

7.
A new algorithm for three-dimensional reconstruction of two-dimensional crystals from projections is presented, and its applicability to biological macromolecules imaged using transmission electron microscopy (TEM) is investigated. Its main departures from the traditional approach is that it works in real space, rather than in Fourier space, and it is iterative. This has the advantage of making it convenient to introduce additional constraints (such as the support of the function to be reconstructed, which may be known from alternative measurements) and has the potential of more accurately modeling the TEM image formation process. Phantom experiments indicate the superiority of the new approach even without the introduction of constraints in addition to the projection data.  相似文献   

8.
In this paper, we present techniques for deriving inversion algorithms in 3-D computer tomography. To this end, we introduce the mathematical model and apply a general strategy, the so-called approximate inverse, for deriving both exact and numerical inversion formulas. Using further approximations, we derive a 2-D shift-invariant filter for circular-orbit cone-beam imaging. Results from real data are presented.   相似文献   

9.
Planar catadioptric vision sensors consist of a pinhole camera observing a scene being reflected on two (or more) planar mirrors. These systems have recently received an increasing attention because, unlike stereo cameras, can capture two views of the same scene without the need of hardware multi-camera synchronization and calibration. In this paper we explore the original scenario in which a robot manipulator, equipped with a pinhole camera on its end-effector, observes an unknown 3-D scene both directly and reflected through multiple mirrors. We present new multiple-view properties for this scenario and, based on these theoretical results, we present new image-based camera localization and new 3-D scene reconstruction algorithms. Extensive simulation and real-data experiments illustrate the theory and show the effectiveness of the proposed designs.  相似文献   

10.
针对以往三维人脸模型重建算法实用性差、算法复杂度高、需要通用人脸模型和对噪声敏感等缺陷,提出了一种计算量小、无需通用人脸模型的三维人脸模型的重建算法。该算法在人工辅助确定特征点的基础上,利用能量函数最小的约束关系实现深度图的初步融合,然后运用改进ICP算法获得隐式的三维人脸模型。通过对获得模型的变换和投影,可产生不同姿态的二维人脸图像。实验结果表明,融合平均误差仅为1.32毫米,效果逼真。和其它算法相比,它还具有存储资源消耗少、算法稳定性高等优点。  相似文献   

11.
Three-dimensional (3-D) scene reconstruction from broadcast video is a challenging problem with many potential applications, such as 3-D TV, free-view TV, augmented reality or three-dimensionalization of two-dimensional (2-D) media archives. In this paper, a flexible and effective system capable of efficiently reconstructing 3-D scenes from broadcast video is proposed, with the assumption that there is relative motion between camera and scene/objects. The system requires no a priori information and input, other than the video sequence itself, and capable of estimating the internal and external camera parameters and performing a 3-D motion-based segmentation, as well as computing a dense depth field. The system also serves as a showcase to present some novel approaches for moving object segmentation, sparse and dense reconstruction problems. According to the simulations for both synthetic and real data, the system achieves a promising performance for typical TV content, indicating that it is a significant step towards the 3-D reconstruction of scenes from broadcast video.  相似文献   

12.
13.
Describes innovative software for catheter localization and 3D reconstruction in stepping-source brachytherapy applications. The patient information is a set of computed tomography (CT) slices, scanned during the implantation of brachytherapy catheters. Catheter geometry and patient anatomy are exported for use with dose calculation software modules. The errors produced by the system are also encouragingly low. Time savings were achieved compared with other traditional reconstruction techniques. Various automated procedures, 3D graphics and a user-friendly GUI have contributed to providing a powerful, comprehensive software tool that is directly useable in clinical practice  相似文献   

14.
The task of recovering three-dimensional (3-D) geometry from two-dimensional views of a scene is called 3-D reconstruction. It is an extremely active research area in computer vision. There is a large body of 3-D reconstruction algorithms available in the literature. These algorithms are often designed to provide different tradeoffs between speed, accuracy, and practicality. In addition, even the output of various algorithms can be quite different. For example, some algorithms only produce a sparse 3-D reconstruction while others are able to output a dense reconstruction. The selection of the appropriate 3-D reconstruction algorithm relies heavily on the intended application as well as the available resources. The goal of this paper is to review some of the commonly used motion-parallax-based 3-D reconstruction techniques and make clear the assumptions under which they are designed. To do so efficiently, we classify the reviewed reconstruction algorithms into two large categories depending on whether a prior calibration of the camera is required. Under each category, related algorithms are further grouped according to the common properties they share.  相似文献   

15.
One of the greatest challenges facing iterative fully-3-D positron emission tomography (PET) reconstruction is the issue of long reconstruction times due to the large number of measurements for 3-D mode as compared to 2-D mode. A rotate-and-slant projector has been developed that takes advantage of symmetries in the geometry to compute volumetric projections to multiple oblique sinograms in a computationally efficient manner. It is based upon the 2-D rotation-based projector using the three-pass method of shears, and it conserves the 2-D rotator computations for multiple projections to each oblique sinogram set. The projector is equally applicable to both conventional evenly-spaced projections and unevenly-spaced line-of-response (LOR) data. The LOR-based version models the location and orientation of the individual LORs (i.e., the arc-correction), providing an ordinary Poisson reconstruction framework. The projector was implemented in C with several optimizations for speed, exploiting the vertical symmetry of the oblique projection process, depth compression, and array indexing schemes which maximize serial memory access. The new projector was evaluated and compared to ray-driven and distance-driven projectors using both analytical and experimental phantoms, and fully-3-D iterative reconstructions with each projector were also compared to Fourier rebinning with 2-D iterative reconstruction. In terms of spatial resolution, contrast, and background noise measures, 3-D LOR-based iterative reconstruction with the rotate-and-slant projector performed as well as or better than the other methods. Total processing times, measured on a single cpu Linux workstation, were approximately 10x faster for the rotate-and-slant projector than for the other 3-D projectors studied. The new projector provided four iterations fully-3-D ordered-subsets reconstruction in as little as 15 s--approximately the same time as FORE + 2-D reconstruction. We conclude that the rotate-and-slant projector is a viable option for fully-3-D PET, offering quality statistical reconstruction in times only marginally slower than 2-D or rebinning methods.  相似文献   

16.
The EM algorithm for PET image reconstruction has two major drawbacks that have impeded the routine use of the EM algorithm: the long computation time due to slow convergence and a large memory required for the image, projection, and probability matrix. An attempt is made to solve these two problems by parallelizing the EM algorithm on multiprocessor systems. An efficient data and task partitioning scheme, called partition-by-box, based on the message passing model is proposed. The partition-by-box scheme and its modified version have been implemented on a message passing system, Intel iPSC/2, and a shared memory system, BBN Butterfly GP1000. The implementation results show that, for the partition-by-box scheme, a message passing system of complete binary tree interconnection with fixed connectivity of three at each node can have similar performance to that with the hypercube topology, which has a connectivity of log(2) N for N PEs. It is shown that the EM algorithm can be efficiently parallelized using the (modified) partition-by-box scheme with the message passing model.  相似文献   

17.
新型三维激光扫描系统曲面重构技术   总被引:2,自引:1,他引:2  
为了克服现有逆向工程装备价格昂贵且不能满足实时测量的缺点,提出了一种新型成本低、扫描速度快的三维激光自由曲面扫描系统.针对该系统的曲面重构问题,提出神经网络曲面重构方案,网络的输入选取所获得的点云数据的X、Y坐标,网络的输出则选取点云数据的Z坐标.比较了径向基神经网络(RBFNN)和多层前馈神经网络(MLPNN)两种典...  相似文献   

18.
An efficient Gauss-Newton iterative imaging technique utilizing a three-dimensional (3-D) field solution coupled to a two-dimensional (2-D) parameter estimation scheme (3-D/2-D) is presented for microwave tomographic imaging in medical applications. While electromagnetic wave propagation is described fully by a 3-D vector field, a 3-D scalar model has been applied to improve the efficiency of the iterative reconstruction process with apparently limited reduction in accuracy. In addition, the image recovery has been restricted to 2-D but is generalizable to three dimensions. Image artifacts related primarily to 3-D effects are reduced when compared with results from an entirely two-dimensional inversion (2-D/2-D). Important advances in terms of improving algorithmic efficiency include use of a block solver for computing the field solutions and application of the dual mesh scheme and adjoint approach for Jacobian construction. Methods which enhance the image quality such as the log-magnitude/unwrapped phase minimization were also applied. Results obtained from synthetic measurement data show that the new 3-D/2-D algorithm consistently outperforms its 2-D/2-D counterpart in terms of reducing the effective imaging slice thickness in both permittivity and conductivity images over a range of inclusion sizes and background medium contrasts.  相似文献   

19.
Fourier-based approaches for three-dimensional (3-D) reconstruction are based on the relationship between the 3-D Fourier transform (FT) of the volume and the two-dimensional (2-D) FT of a parallel-ray projection of the volume. The critical step in the Fourier-based methods is the estimation of the samples of the 3-D transform of the image from the samples of the 2-D transforms of the projections on the planes through the origin of Fourier space, and vice versa for forward-projection (reprojection). The Fourier-based approaches have the potential for very fast reconstruction, but their straightforward implementation might lead to unsatisfactory results if careful attention is not paid to interpolation and weighting functions. In our previous work, we have investigated optimal interpolation parameters for the Fourier-based forward and back-projectors for iterative image reconstruction. The optimized interpolation kernels were shown to provide excellent quality comparable to the ideal sinc interpolator. This work presents an optimization of interpolation parameters of the 3-D direct Fourier method with Fourier reprojection (3D-FRP) for fully 3-D positron emission tomography (PET) data with incomplete oblique projections. The reprojection step is needed for the estimation (from an initial image) of the missing portions of the oblique data. In the 3D-FRP implementation, we use the gridding interpolation strategy, combined with proper weighting approaches in the transform and image domains. We have found that while the 3-D reprojection step requires similar optimal interpolation parameters as found in our previous studies on Fourier-based iterative approaches, the optimal interpolation parameters for the main 3D-FRP reconstruction stage are quite different. Our experimental results confirm that for the optimal interpolation parameters a very good image accuracy can be achieved even without any extra spectral oversampling, which is a common practice to decrease errors caused by interpolation in Fourier reconstruction.  相似文献   

20.
We describe a fast forward and back projector pair based on inverse Fourier rebinning for use in iterative image reconstruction for fully three-dimensional (3-D) positron emission tomography (PET). The projector pair is used as part of a factored system matrix that takes into account detector-pair response by using shift-variant sinogram blur kernels, thereby combining the computational advantages of Fourier rebinning with iterative reconstruction using accurate system models. The forward projector consists of a two-dimensional (2-D) projector, which maps 3-D images into 2-D direct sinograms, followed by exact inverse rebinning which maps the 2-D into fully 3-D sinograms. The back projector is implemented as the transpose of the forward projector and differs from the true exact rebinning operator in the sense that it does not require reprojection to compute missing line of responses (LORs). We compensate for two types of inaccuracies that arise in a cylindrical PET scanner when using inverse Fourier rebinning: 1) nonuniform radial sampling and 2) nonconstant oblique angles in the radial direction in a single oblique sinogram. We examine the effects of these corrections on sinogram accuracy and reconstructed image quality. We evaluate performance of the new projector pair for maximum a posteriori (MAP) reconstruction of simulated and in vivo data. The new projector results in only a small loss in resolution towards the edge of the field-of-view when compared to the fully 3-D geometric projector and requires an order of magnitude less computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号