首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

2.
Abstract

New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

3.
4.
We have demonstrated that the DNA sequence between two triplex-forming polypurine.polypyrimidine (Pu.Py) tracts was protected from DNA modifying enzymes upon formation of triplex DNA structures with an oligodeoxyribonucleotide in which two triplex-forming Pu or Py tracts were placed at the termini (triplex-bridge formation). In model experiments, when two triplex structures were formed between double-stranded DNA with the sequence (AG)17-(N)18-(T)34, and an oligodeoxyribonucleotide, (T)34-(N)18-(GA)17, not only the Pu.Py tracts but also the 18 bp non-Pu.Py sequence in the duplex DNA between the tracts was protected from restriction enzymes, HpaII methylase and DNase I. This protection occurred only when both of the Pu.Py tracts were involved as triplexes. The length of the tracts could be as short as 21 bp, while the difference in length between the non-Pu.Py sequences on the duplex and the oligodeoxyribonucleotide should be within 10 nucleotides. The efficiency of protection was enhanced in the presence of a cationic detergent, cetyltrimethylammonium bromide, during triplex formation. Protection was also observed with another type of the triplex bridge formed between (G)34 and (T)34 tracts with an oligodeoxyribonucleotide, (T)34-(N)20-(G)34. These findings suggest that the protection of specific DNA sequences from enzymes by triplex-bridge formation can be applied to any DNA sequence by placing it between two triplex-forming sequences.  相似文献   

5.
Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.  相似文献   

6.
7.
Microsatellite DNA sequences are ubiquitous in the human genome, and mutation rates of these repetitive sequences vary with respect to DNA sequence as well as length. We have analyzed polymerase-DNA interactions as a function of microsatellite sequence, using polypyrimidine/polypurine di- and tetranucleotide alleles representative of those found in the human genome. Using an in vitro primer extension assay and the mammalian DNA polymerase alpha-primase complex, we have observed a polymerase termination profile for each microsatellite that is unique to that allele. Interestingly, a periodic termination profile with an interval size (9-11 nucleotides) unrelated to microsatellite unit length was observed for the [TC](20) and [TTCC](9) templates. In contrast, a unit-punctuated polymerase termination profile was found for the longer polypurine templates. We detected strong polymerase pauses within the [TC](20) allele at low reaction pH which were eliminated by the addition of deaza-dGTP, consistent with these specific pauses being a consequence of triplex DNA formation during DNA synthesis. Quantitatively, a strand bias was observed in the primer extension assay, in that polymerase synthesis termination is more intense when the polypurine sequence serves as the template, relative to its complementary polypyrimidine sequence. The HSV-tk forward mutation assay was utilized to determine the corresponding polymerase alpha-primase error frequencies and specificities at the microsatellite alleles. A higher microsatellite polymerase error frequency (50x10(-4) to 60x10(-4)) was measured when polypurine sequences serve as templates for DNA synthesis, relative to the polypyrimidine template (18x10(-4)). Thus, a positive correlation exists between polymerase alpha-primase pausing and mutagenesis within microsatellite DNA alleles.  相似文献   

8.
A synthetic DNA triple helix sequence was formed by annealing a pyrimidinic 21 mer single strand sequence onto the complementary purinic sequence centred on a 27 mer duplex DNA. Melting of the third strand was monitored by UV spectrophotometry in the temperature range 10-90 degrees C. The T(m) of the triplex, 37 degrees C, was well separated from the onset of duplex melting. When the same triple helix was formed on the duplex bearing one nick in the center of the pyrimidinic sequence the T(m) of the triplex was shifted to approximately 32 degrees C and overlapped the melting of the duplex. We have used fluorescence polarization anisotropy (FPA) measurements of ethidium bromide (EB) intercalated in duplex and triplex samples to determine the hydrodynamic parameters in the temperature range 10-40 degrees C. The fluorescence lifetime of EB in the samples of double and triple stranded DNA is the same (21.3 +/- 0.5 ns) at 20 degrees C, indicating that the geometries of the intercalation sites are similar. The values for the hydration radii of the duplex, normal triplex, and nicked triplex samples were 10.7 +/- 0.2, 12.2 +/- 0.2, and 12.0 +/- 0.2 A. FPA measurements on normal triplex DNA as a function of temperature gave a melting profile very similar to that derived by UV absorption spectroscopy. For the triplex carrying a nick, the melting curve obtained using FPA showed a clear shift compared with that obtained for the normal triplex sample. The torsional rigidity of the triplex forms was found to be higher than that of the duplex form.  相似文献   

9.
Molecular mechanics has been used to predict the structure of the Y+.R-.R(+)-type DNA triple helix, in which a second polypurine strand binds antiparallel to the homopurine strand of a homopurine/homopyrimidine stretch of duplex DNA. From calculations on the sequence d(C)10.d(G)10.d(G)10, two likely structures emerge. One has the glycosidic torsions of the third strand bases in the anti-conformation and Hoogsteen hydrogen-bonds to the purine strand of the duplex, the other has the third strand purines in the syn orientation and uses a reverse-Hoogsteen hydrogen-bonding pattern. Despite the large structural differences between these two types of triplex, calculations performed in vacuo with a distance-dependent dielectric constant to mimic the shielding effect of solvent show them to be energetically very similar, with the latter (syn) slightly preferred. However, if explicit solvent molecules are included in the calculation, the anti conformation is found to be much preferred. This difference in the results seems to stem from an underestimation of short-range electrostatic interactions in the in vacuo simulations. When TAA or TAT base triples are substituted for the sixth CGG triple in the sequence, it is found that, for the solvated model, the third strand base of the TAA triple prefers the syn orientation while that in the TAT triple retains a preference, though reduced, for the anti conformation.  相似文献   

10.
介绍了碱基组成、碱基修饰或替代、DNA骨架的修饰、DNA配体的结合及反应体系中的盐离子和pH值等因素对三链DNA稳定性的影响。对三链DNA稳定性研究中应注意的几个问题也作了讨论。  相似文献   

11.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides binding duplex A-T or G-C base-pair DNA sequences specifically at homopurine sites in the major groove as T·A-T and C+·G-C triplets. Here we report the successful modeling of novel unnatural nucleosides that recognize the T-A DNA base pair by Hoogsteen interaction. Since the DNA triplex can be considered to assume an A-type or B-type conformation, these novel Hoogsteen nucleotides are tested within model A-type and B-type conformation triplex structures. A triplet consisting of the T-A base pair and one of the novel Hoogsteen nucleotides replaces the central T·A-T triplet in the triplex using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration. The entire triplex is energy minimized and the presence of any structural or energetic perturbations due to the central triplet is assessed with respect to the unmodified energy-minimized (T·A-T)11 proposed starting structures. Incorporation of these novel triplets into both A-type and B-type natural triplex structures provokes minimal change in the configuration of the central and adjacent triplets. The plan is to produce a series of Hoogsteen-like bases that preferentially bind the T-A major groove in either an A-type or B-type conformation. Selective recognition of the T-A major groove with respect to the G-C major groove, which presents similar keto and amine placement, is also assessed with configurational preference. Evaluation of the triplex solution structure by using these unnatural bases as binding conformational probes is a prerequisite to the further design of triplet forming bases. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Sinyakov  A. N.  Ryabinin  V. A.  Grimm  G. N.  Boutorine  A. S. 《Molecular Biology》2001,35(2):251-260
The possibility is discussed of stabilizing a DNA triple helix by covalent conjugation to the third strand (through its terminal phosphate) of ligands that have affinity to double and triple helices. Two types of stabilizers are considered: minor groove binders based on oligopyrroles, and triplex-specific intercalators. As a target, a synthetic 29-mer duplex containing a natural polypurine sequence of the human immunodeficiency provirus was employed. The stabilization with minor groove binders requires several conditions to be respected: a sufficiently long linker capable of reaching the minor groove from the major groove, a specific double-stranded structure of the oligopyrrole fragment, and its in-phase fitness to the target sequence. The best stabilizers of a triplex were novel conjugates in which two parallel molecules containing six pyrrole units each are linked to the same 5"-phosphate of a 16-mer triplex-forming oligonucleotide. The stabilizing properties of these derivatives were comparable to those of benzoindoloquinoline (BIQ) intercalators attached to the terminal phosphate of triple-helix forming oligonucleotides.  相似文献   

13.
The binding of guanosine/thymidine-rich oligodeoxyribonucleotides containing various deletions, extensions, and point mutations to polypurine DNA targets was investigated by DNase I footprinting. Intermolecular purine-purine-pyrimidine triple-helical DNA formation was best achieved using oligonucleotides 12 nucleotides in length. Longer oligonucleotides were slightly weaker in binding affinity, whereas shorter oligonucleotides were considerably weaker. Oligonucleotide extensions had a slight effect on triplex formation, while single point mutations located near the oligonucleotide ends had a greater effect. In the cases of extensions and point mutations, changes to the 3' end of the oligonucleotide had a consistently greater effect on triplex formation than changes to the 5' end. Such differences in triplex-forming ability were not caused by an intrinsic property of these oligonucleotides, since the same point mutated oligonucleotides could bind with high affinity to duplex DNAs containing complementary sites. Taken together, our data suggest that there may be an asymmetry involved in the process of purine-motif triplex formation, with interactions between the 3' end of the oligonucleotide and complementary sequences on the target duplex DNA being dominant.  相似文献   

14.
Bentin T  Larsen HJ  Nielsen PE 《Biochemistry》2003,42(47):13987-13995
"Tail-clamp" PNAs composed of a short (hexamer) homopyrimidine triplex forming domain and a (decamer) mixed sequence duplex forming extension have been designed. Tail-clamp PNAs display significantly increased binding to single-stranded DNA compared with PNAs lacking a duplex-forming extension as determined by T(m) measurements. Binding to double-stranded (ds) DNA occurred by combined triplex and duplex invasion as analyzed by permanganate probing. Furthermore, C(50) measurements revealed that tail-clamp PNAs consistently bound the dsDNA target more efficiently, and kinetics experiments revealed that this was due to a dramatically reduced dissociation rate of such complexes. Increasing the PNA net charge also increased binding efficiency, but unexpectedly, this increase was much more pronounced for tailless-clamp PNAs than for tail-clamp PNAs. Finally, shortening the tail-clamp PNA triplex invasion moiety to five residues was feasible, but four bases were not sufficient to yield detectable dsDNA binding. The results validate the tail-clamp PNA concept and expand the applications of the P-loop technology.  相似文献   

15.
We report here that the 64-base pair (bp) guanine-rich polypurine:polypyrimidine tract derived from the right end of the rat long interspersed DNA element is reactive in a supercoil-dependent manner with a variety of chemical probes of non-B DNA structure. At pH 5.0 in the presence of Mg2+, part of the sequence (position 10-40) forms the following two types of triplexes: a G.G.C triplex, and an unusual C.G.C triplex. The latter structure is much more prevalent than the former and is unusual in that the resultant free purine strand forms a hairpin loop. In the absence of Mg2+ the G.G.C triplex disappears and the amount of C.G.C triplex is diminished, and at pH 7.5 in the presence or absence of Mg2+, little or no triplex is observed. Deletion of the 24-bp region just 3' of the triplex-forming region greatly reduces the amount of triplex formed. In this region, which includes an 18-bp polypurine:polypyrimidine sequence, both strands exhibit a moderate symmetric reactivity with the chemical probes tested, independent of pH and Mg2+. The implications of this structurally complex region for the properties of the rat L1 element are discussed.  相似文献   

16.
Triplex-forming oligonucleotides (TFOs) have the potential to serve as gene therapeutic agents on the basis of their ability to mediate site-specific genome modification via induced recombination. However, high-affinity triplex formation is limited to polypurine/polypyrimidine sites in duplex DNA. Because of this sequence restriction, careful analysis is needed to identify suitable TFO target sites within or near genes of interest. We report here an examination of two key parameters which influence the efficiency of TFO-induced recombination: (1) binding affinity of the TFO for the target site and (2) the distance between the target site and the mutation to be corrected. To test the influence of binding affinity, we compared induced recombination in human cell-free extracts by a series of G-rich oligonucleotides with an identical base composition and an increasing number of mismatches in the third strand binding code. As the number of mismatches increased and, therefore, binding affinity decreased, induced recombination frequency also dropped. There was an apparent threshold at an equilibrium dissociation constant (K(d)) of 1 x 10(-)(7) M. In addition, TFO chemical modification with N,N-diethylethylenediamine (DEED) internucleoside linkages to confer improved binding was found to yield increased levels of induced recombination. To test the ability of triplex formation to induce recombination at a distance, episomal targets with informative reporter genes were constructed to contain polypurine TFO target sites at varying distances from the mutations to be corrected. TFO-induced recombination in mammalian cells between a plasmid vector and a donor oligonucleotide was detected at distances ranging from 24 to 750 bp. Together, these results indicate that TFO-induced recombination requires high-affinity binding but can affect sites hundreds of base pairs away from the position of triplex formation.  相似文献   

17.
18.
19.
Dixon BP  Lu L  Chu A  Bissler JJ 《Mutation research》2008,643(1-2):20-28
DNA triplex structures can block the replication fork and result in double-stranded DNA breaks (DSBs). RecQ and RecG helicases may be important for replication of such sequences as RecQ resolves synthetic triplex DNA structures and RecG mediates replication restart by fork regression. Primer extension on an 88bp triplex-forming polypurine.polypyrimidine (Pu.Py) tract from the PKD1 gene demonstrated that RecQ, but not RecG, facilitated primer extension by T7 DNA polymerase. A high-throughput, dual plasmid screening system using isogenic bacterial lines deficient in RecG, RecQ, or both, revealed that RecQ deficiency increased mutation to sequence flanking this 88bp tract by eight to ten-fold. Although RecG facilitated small deletions in an 88bp mirror repeat-containing sequence, it was absolutely required to maintain a 2.5kb Pu.Py tract containing multiple mirror repeats. These results support a two-tiered model where RecQ facilitates fork progression through triplex-forming tracts and, failing processivity, RecG is critical for replication fork restart.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号