首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the incompressible limit of the three-dimensional compressible magnetohydrodynamic equations, which models the dynamics of compressible quasi-neutrally ionized fluids under the influence of electromagnetic fields. Based on the convergence-stability principle, we show that, when the Mach number, the shear viscosity coefficient, and the magnetic diffusion coefficient are sufficiently small, the initial-value problem of the model has a unique smooth solution in the time interval where the ideal incompressible magnetohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Mach number, the shear viscosity coefficient, and the magnetic diffusion coefficient go to zero. Moreover, we obtain the convergence of smooth solutions for the model forwards those for the ideal incompressible magnetohydrodynamic equations with a sharp convergence rate.  相似文献   

2.
We consider the short time strong solutions to the compressible magnetohydrodynamic equations with initial vacuum, in which the velocity field satisfies the Navier‐slip condition. The Navier‐slip condition differs in many aspects from no‐slip conditions, and it has attracted considerable attention in nanoscale and microscale flows research. Inspired by Kato and Lax's idea, we use the Lax–Milgram theorem and contraction mapping argument to prove local existence. Moreover, under the Navier‐slip condition, we establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of L norm of the deformation tensor D(u). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we prove a blow-up criterion of strong solutions to the 3D viscous and non-resistive isentropic compressible magnetohydrodynamic equations with initial vacuum. This blow-up criterion depends only on the gradient of velocity, which is analogous to the one for the compressible Navier–Stokes equations (cf. Huang et al. (2010) [40]).  相似文献   

4.
We prove the existence of globally defined variational solutions to the compressible magnetohydrodynamic (MHD) equations with the coefficients depending on the temperature. As a by-product, we give a simple proof for the nonexistence of nontrivial weak time-periodic solutions by the entropy principle of Clausius–Duhem and a new Poincaré-type inequality.  相似文献   

5.
6.
In this paper, we are concerned with strong solutions to the Cauchy problem for the incompressible Magnetohydrodynamic equations. By the Galerkin method, energy method and the domain expansion technique, we prove the local existence of unique strong solutions for general initial data, develop a blow‐up criterion for local strong solutions and prove the global existence of strong solutions under the smallness assumption of initial data. The initial data are assumed to satisfy a natural compatibility condition and allow vacuum to exist. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we prove a blow-up criterion of strong solutions to the 3-D viscous and non-resistive magnetohydrodynamic equations for compressible heat-conducting flows with initial vacuum. This blow-up criterion depends only on the gradient of velocity and the temperature, which is similar to the one for compressible Navier-Stokes equations.  相似文献   

8.
The compactness of weak solutions to the magnetohydrodynamic equations for the viscous, compressible, heat conducting fluids is considered in both the three-dimensional space R3 and the three-dimensional periodic domains. The viscosities, the heat conductivity as well as the magnetic coefficient are allowed to depend on the density, and may vanish on the vacuum. This paper provides a different idea from [X. Hu, D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys. (2008), in press] to show the compactness of solutions of viscous, compressible, heat conducting magnetohydrodynamic flows, derives a new entropy identity, and shows that the limit of a sequence of weak solutions is still a weak solution to the compressible magnetohydrodynamic equations.  相似文献   

9.
10.
We use a pure energy method recently developed by Guo and Wang to prove the optimal time decay rates of the solutions to the compressible magnetohydrodynamic equations in the whole space. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained.  相似文献   

11.
This paper concerns the Cauchy problem of the two-dimensional full compressible magnetohydrodynamic equations with zero heat-conduction and vacuum as far field density. In particular, the initial density can have compact support. We prove that the Cauchy problem admits a local strong solution provided both the initial density and the initial magnetic field decay not too slow at infinity.  相似文献   

12.
The purpose of this paper is to prove the existence of a spatially periodic weak solution to the steady compressible isentropic MHD equations in R3 for any specific heat ratio γ 1.The proof is based on the weighted estimates of both pressure and kinetic energy for the approximate system which result in some higher integrability of the density,and the method of weak convergence.According to the author's knowledge,it is the first result that treats in three dimensions the existence of weak solutions to the steady compressible MHD equations with γ 1.  相似文献   

13.
In this paper,the global existence of the classical solution to the vacuum free boundary problem of full compressible magnetohydrodynamic equations with large initial data and axial symmetry is studied.The solutions to the system(1.6)–(1.8) are in the class of radius-dependent solutions,i.e.,independent of the axial variable and the angular variable.In particular,the expanding rate of the moving boundary is obtained.The main difficulty of this problem lies in the strong coupling of the magnetic field,velocity,temperature and the degenerate density near the free boundary.We overcome the obstacle by establishing the lower bound of the temperature by using different Lagrangian coordinates,and deriving the uniform-in-time upper and lower bounds of the Lagrangian deformation variable r;by weighted estimates,and also the uniform-in-time weighted estimates of the higher-order derivatives of solutions by delicate analysis.  相似文献   

14.
This paper is concerned with a one-dimensional nonisentropic compressible planar magnetohydrodynamic flow with general initial data, whose behaviors at far fields x→± are different. The low Mach limit for the system is rigorously justified. The limit relies on the uniform estimates including weighted time derivatives and an extended convergence lemma.  相似文献   

15.
In this paper, we are concerned with Cauchy problem for the multi-dimensional (N ≥ 3) non-isentropic full compressible magnetohydrodynamic equations. We prove the existence and uniqueness of a global strong solution to the system for the initial data close to a stable equilibrium state in critical Besov spaces. Our method is mainly based on the uniform estimates in Besov spaces for the proper linearized system with convective terms.  相似文献   

16.
The connection between the compressible viscous quantum magnetohydrodynamic model with low Mach number and the ideal incompressible magnetohydrodynamic equations is studied in a periodic domain. More precisely, for well‐prepared initial data, we prove the convergence of classical solutions of the compressible viscous quantum magnetohydrodynamic model to the classical solutions of the incompressible ideal magnetohydrodynamic equations with a convergence rate when the Mach number, viscosity coefficient, and magnetic diffusion coefficient simultaneously tend to zero.  相似文献   

17.
In this paper, we establish a new blowup criterions for the strong solution to the Dirichlet problem of the three‐dimensional compressible MHD system with vacuum. Specifically, we obtain the blowup criterion in terms of the concentration of density in BMO norm or the concentration of the integrability of the magnetic field at the first singular time. The BMO‐type estimate for the Lam system 2.6 and a variant of the Brezis‐Waigner's inequality 2.3 play a critical role in the proof. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
C. Miao In this paper, we are concerned with the 1D Cauchy problem of the compressible Navier–Stokes equations with the viscosity μ(ρ) = 1+ρβ(β≥0). The initial density can be arbitrarily large and keep a non‐vacuum state at far fields. We will establish the global existence of the classical solution for 0≤β < γ via a priori estimates when the initial density contains vacuum in interior interval or is away from the vacuum. We will show that the solution will not develop vacuum in any finite time if the initial density is away from the vacuum. To study the well‐posedness of the problem, it is crucial to obtain the upper bound of the density. Some new weighted estimates are applied to obtain our main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We establish the existence and uniqueness of a strong solution to the steady magnetohydrodynamic equations for the compressible barotropic fluids in a bounded smooth domain with a perfectly conducting boundary, under the assumption that the external force field is small.  相似文献   

20.
The asymptotic behavior of solutions of the damped compressible Euler equations is conjectured to obey to the famous porous media equations (PMES). The previous works on this topic concern the case away from vacuum where the system is strictly hyperbolic. In present paper, we prove that the L entropy weak solution with vacuum, obtained by the compensated compactness theory, converges strongly in space to the unique similarity solution of the related PME, as time goes to infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号