首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在水热法合成LiFePO4和HF刻蚀合成Mxene(金属碳/氮化物)的基础上,通过湿化学法制备了不同Mxene含量的Mxene/LiFePO4复合正极材料,并对其物相、形貌和电化学性能进行了研究。结果表明,Mxene纳米片在LFP颗粒中的负载,使得LiFePO4和Mxene之间通过“点到面”的导电模式在复合电极中构建高效导电网络,提高LiFePO4正极材料的电子导电性。同时,Mxene二维层状结构的特点缩短了锂离子在正极材料中的扩散路径。因此,Mxene/LiFePO4正极材料表现出良好的电化学性能,包括离子导电性和电子导电性等。其中,3%Mxene的负载,在0.1、1和5C充放电倍率下,首次放电比容量分别为159.3、136.8和100.2 m Ah·g-1,表现出良好的循环稳定性。  相似文献   

2.
采用热处理方法将回收的正极片除去黏结剂,同时将LiFePO4氧化为Li3Fe2(PO43及Fe2O3并作为再生反应原料,分别以葡萄糖、一水合柠檬酸、聚乙二醇为还原剂,650℃高温反应16h、20h、24h碳热还原再生LiFePO4。测试结果表明,3个还原剂体系均能获得再生LiFePO4材料。以葡萄糖为还原剂,高温反应16h、20h、24h,放电比容量分别为118.49mA·h/g、118.38mA·h/g、123.77mA·h/g;100次循环后,容量保持率分别为88.40%、80.07%、72.56%。还原剂对再生材料性能影响显著,以葡萄糖为还原剂,再生材料的容量特性及循环性能均最优,一水合柠檬酸还原剂体系次之,聚乙二醇还原剂体系电化学性能最差。研究结果为大规模废旧LiFePO4材料再生提供一种新的途径。  相似文献   

3.
为优化LiFePO4正极材料的合成与导电相包覆改性工艺,提高倍率充放电性能,综述了pH、配料温度对合成LiFePO4性能的影响,以及蔗糖、葡萄糖、柠檬酸与抗坏血酸等不同碳源,导电相原位包覆与混合包覆等改性工艺对LiFePO4导电相包覆改性性能的影响。  相似文献   

4.
水热法是一种低成本、低能耗、低污染的绿色化学合成方法,在锂离子蓄电池正极粉体材料的制备方面拥有广阔的前景。LiFePO4/C复合材料因为其高安全性,有着广泛的应用,但在水热条件下不容易获得分散性好的纳米级的LiFePO4粉体材料。本文通过研究pH值、反应温度、反应时间等影响因素对水热产物性能的影响,使用水热法制备出分散性好、电化学性能优良的LiFePO4/C纳米复合材料。  相似文献   

5.
LiFePO4/C具有高温稳定性好、价格低廉、循环性能良好、环保等性能,是一种具有发展潜力的锂离子动力电池正极材料之一,因此在锂离子电池行业备受关注。但由于其电子电导率低以及锂离子扩散速率慢等缺点制约其发展。介绍了磷酸铁锂的结构、性能、充放电原理和掺杂机理,尤其对近年来LiFePO4/C材料的掺杂改性研究进行了综述。  相似文献   

6.
陆晓挺 《粘接》2022,(2):46-48
以Li OH·H2O、FeSO4·7H2O和H3PO4为原料,采用CTAB辅助水热法合成LiFePO4/C复合正极材料。使用扫描电子显微镜(SEM)和充放电等测试技术研究了材料的形貌及倍率充放电性能。结果表明,添加0.32 g CTAB所得LiFePO4/C样品具有最好的电化学性能,在0.1C、0.2C、0.5C和1C倍率下,样品的首次放电比容量分别为143、133、113和94 (m A·h)/g。  相似文献   

7.
橄榄石结构的磷酸铁锂(LiFePO4)被认为是潜力巨大的锂离子动力电池的正极材料,具有理论比容量高、安全性好、循环寿命长、环境友好和原料来源广泛等优点。但是,由于其本身结构的缺陷,导致其倍率性能低下。本文阐述了近年来改善LiFePO4的倍率性能的研究,重点介绍了包覆碳导电层、掺杂金属离子、合成纳米材料、制备多孔材料等方法,其中以纳米颗粒为基本结构单元的多孔LiFePO4微米球材料倍率性能优异、体积能量密度高,具备广阔的研究和应用前景。  相似文献   

8.
磷酸铁(FePO4)是锂电池正极材料磷酸铁锂(LiFePO4)的核心前驱体,FePO4形貌及硫含量对合成的LiFePO4材料性能有重要影响。为得到类球形低硫FePO4产品,在传统液相沉淀法技术基础上做了改进优化,添加十六烷基三甲基溴化铵(CTAB)作为形貌助剂提高产品球形度,添加氨水作为配体形成磷酸铁铵配合物改善结晶过程,降低产品硫含量。结果表明:所制备的FePO4产品硫质量分数低,达到2.6×10 -5,形貌为均一的微米类球形颗粒,D50=11.4 μm,振实密度达到1.22 g/cm 3,有望成为制备高压实密度LiFePO4材料的核心前驱体。  相似文献   

9.
针对改性磷酸铁锂(LiFePO4)材料作为锂离子电池正极材料的近期研究进行了综述。LiFePO4虽然以其稳定性好、安全性好、环境友好而被认为是最具有发展前景的动力锂离子电池正极材料,但固有的电子电导率和锂离子扩散系数低下导致其电化学性能较差。针对提高其电化学性能的改性研究进行综述,分析了元素掺杂、表面碳包覆、颗粒纳米化和材料复合化4种改性策略对Li Fe PO4电化学性能的影响,讨论了这4种改性策略的优缺点。分析表明,4种改性策略有效改善了锂离子扩散动力学和电子电导率,但是表面碳包覆和颗粒纳米化会降低材料的振实密度,导致能量密度低。最后,指出解决现存问题的研究方向,即开发电池性与电容性共存的改性策略将是一个可行方法。  相似文献   

10.
为优化液相法一步制备磷酸铁锂(LiFePO4)技术,以七水合硫酸亚铁、磷酸二氢铵、一水合氢氧化锂为原料,通过添加十二烷基苯磺酸钠(SDBS)作为表面活性剂,采用液相水热法合成技术,一步合成了LiFePO4正极材料。研究了水热法一步合成技术对LiFePO4材料的组成、结构、形貌、粒度等的影响,通过电感耦合等离子体发射光谱仪(ICP-OES)、X射线衍射仪(XRD)、扫描电镜(SEM)、粒度分析仪等对材料进行了表征分析,并测试了材料的电化学性能。研究结果表明,合成得到的LiFePO4材料为微米级球形颗粒形貌的正交晶系非化学计量比的Li1.02Fe0.994PO4材料。电化学性能测试结果表明,在0.1C倍率下首次充、放电比容量分别为162.0、159.9 mA·h/g,库伦效率达到98.7%、倍率性能(以1C/0.1C保持率计)为92.3%,0.1C倍率循环100次容量保持率为96.4%,展现出良好的电化学性能。  相似文献   

11.
锂离子电池正极材料的性能是锂电池技术发展的瓶颈。近年来,为了提高锂离子电池正极材料的循环寿命、热稳定性和倍率性能等,三氧化二铝涂覆正极材料已经被广泛研究。所讨论的三氧化二铝涂层分为粗糙涂层、超薄涂层和厚涂层。简要论述了三氧化二铝表面涂层改善正极材料的作用,如氟化氢清除剂、物理保护屏障、提高锂离子扩散速率、提升正极材料的热稳定性能、与六氟磷酸锂(LiPF6)反应生成二氟磷酸锂(LiPO2F2)和抑制JahnTeller效应等。介绍表面改性的方法,包括浸渍法、沉淀法、干法包覆、溅射法和原子层沉积法等,以及其对锂离子电池正极材料钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)及三元材料(Li-Ni-Co-Mn-O)的影响。最后,展望了三氧化二铝表面包覆和原子层沉积技术的发展前景。  相似文献   

12.
研究了磷酸铁锂(LiFePO4)制造过程中共生磷酸锂(Li3PO4)的生产条件,总结出混料锂铁比例、研磨粒径以及烧结工艺对共生磷酸锂(Li3PO4)含量的影响规律。实验结果表明,Li/Fe比例>1.04,研磨粒度>1.0μm,烧成温度达到820℃条件下,容易造成磷酸铁锂中Li3PO4杂质的生成。实验证明,当磷酸铁锂中Li3PO4含量升高会带来LiFePO4正极材料充放电性能和电阻的增大,不利于材料电化学性能的发挥。  相似文献   

13.
随着锂离子电池产业的快速发展,退役锂离子电池的回收利用问题已成为工业和学术界关注的热点。前人对废旧锂离子电池中有价值资源的回收做了大量研究,但将回收的锂离子电池材料直接转化为新型储能体系电极材料的研究鲜有报道。为实现退役电池的资源化再利用,可通过简单的H2SO4浸渍法,将废旧锂离子电池中锰酸锂(LiMn2O4)材料转化为MnO2,并用做水系锌离子电池正极材料。通过XRD、XPS、BET、SEM、CV、TEM、EIS以及电化学性能测试等表征方法,探究酸浸渍条件如温度、时间等对所制备MnO2形貌、结构和电化学性能的影响规律。结果表明:LiMn2O4材料经酸浸渍会发生歧化反应,使Li+和部分Mn2+从晶格中溶出,而浸渍温度对离子的溶出速度有显著影响。室温下,LiMn2O4晶格中离子的溶出速度较慢,可获得与其晶体结构相近的λ-MnO<...  相似文献   

14.
为了改善磷酸铁锂的电化学性能,同时适于低成本的工业化生产,分别采用新型液相沉淀法和高温固相法合成LiFePO4/C复合正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)等方法对其晶体结构和表观形貌进行表征,新型液相沉淀法合成的LiFePO4粒径在100nm左右,结晶度好,室温下以0.47C和1.0C倍率放电,最高放电比容量分别达到167.91 mA·h·g-1相似文献   

15.
以钛白生产副产物七水硫酸亚铁为铁源,工业磷酸二氢铵为磷源,双氧水为氧化剂,采用共沉淀法合成了不同粒径和形貌的二水磷酸铁,并以此为前驱体,通过碳热还原法制备了粒径不同的LiFePO4/C正极材料。经过对样品进行X射线衍射(XRD)、扫描电镜(SEM)以及恒电流充放电测试,研究了二水磷酸铁及LiFePO4/C的结构、形貌以及电化学性能。结果表明,以较细的二水磷酸铁为铁源,制备得到的LiFePO4/C颗粒较细,且具有更优异的电化学性能。0.1、0.5、1、2、5、10 C放电比容量分别为154、148、144、140、130、120 mA·h/g。  相似文献   

16.
锂离子电池正极材料磷酸铁锂研究进展   总被引:2,自引:1,他引:1  
与氧化钴锂(LiCoO2)、氧化镍锂(LiNiO2)相比,橄榄石结构磷酸铁锂(LiFePO4)具有安全、环保、比容量高、循环性能优异、高温特性好等优点,被誉为最具发展前景的锂离子电池正极材料。长的循环寿命、优良的高倍率放电性能、高的放电平台、大的能量密度以及良好的热稳定性能,也使得磷酸铁锂成为高功率动力电池正极的首选材料。但是,磷酸铁锂也存在电子电导率相对较低、锂离子扩散系数小、振实密度不高、低温特性不好等缺点,因而制约着它的应用和发展。从磷酸铁锂结构、性能、制备和改性等方面综述了近年来磷酸铁锂的研究进展。  相似文献   

17.
高强  吕洪  熊凡  陈飞  杨则恒  张卫新 《化工学报》2019,70(4):1628-1634
在温和的反应条件下,使用十二烷基苯磺酸钠(SDBS)成功合成了片状二水磷酸铁,并将其与氢氧化锂、柠檬酸球磨混合,采用碳热还原法制备了具有纳米厚度的片状LiFePO4/C电极材料。研究了SDBS对磷酸铁形貌以及LiFePO4/C电极材料电化学性能的影响。利用X-射线衍射、扫描电子显微镜和充放电测试等技术手段,对合成样品的物相、形貌和电化学性能进行了分析测试。电化学测试表明,在25℃,2.0~4.2 V电压范围条件下,使用片状二水磷酸铁为前驱体制备的LiFePO4/C样品,在0.1 C下放电比容量高达166.4 mA·h·g-1,且首次库仑效率达到99.6%,在1 C下循环500次容量保持率为99%,表现出了优异的电化学性能。  相似文献   

18.
超热水中快速连续制备LiFePO4/C纳米粒子   总被引:1,自引:0,他引:1       下载免费PDF全文
A rapid and continuous method for production of LiFePO4/C nanoparticles in super heated water is described,wherein soluble starch was used as carbon precursor.The effects of pH,flow rate,temperature,and pressure on the formation of LiFePO4/C particles were investigated.Results showed that the pH value was the key factor on the formation of phase pure LiFePO4,which only formed at pH=7;the LiFePO4/C occurred as particles with about 70-200 nm size and LiFePO4 was covered by a thin carbon layer;higher flow rate,higher pressure,and lower temperature led to smaller particles of LiFePO4/C.  相似文献   

19.
杨姗姗  刘昱 《广东化工》2023,(9):112-114
随着电动车和混合电动车等新能源交通工具的发展,人们对于具有高比能量与高功率密度的锂离子电池的需求也在逐渐增高。磷酸铁锂(LiFePO4)作为目前产业最为主流的动力电池正极材料之一,具有安全性能高、循环寿命长以及价格低廉等优点。本文通过研究磷酸铁锂正极材料领域的国内外专利申请文献,分析了该领域的专利申请趋势和主要国家的专利有效性,归纳出全球重点申请人和我国的主要专利权人,对国内专利权人的重点授权专利进行探讨,为相关产业及研究的发展方向提供参考。  相似文献   

20.
磷酸铁锂(LiFePO4)具有高温稳定性较好、循环性能良好、环保等特点,已成为锂离子动力电池正极材料之一。但由于磷酸铁锂电导率低及锂离子扩散速率慢等缺点,制约其在动力电池行业的发展。因此主要从包覆碳材料对磷酸铁锂进行表面改性、对磷酸铁锂进行掺杂、制备亚微米或纳米级的磷酸铁锂或制备特殊形貌的磷酸铁锂3方面进行综述,分析改善磷酸铁锂性能最优的方法,对其未来的发展趋势进行了预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号