首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the substitution of Cu for Ni on the magnetoresistance behaviour and the magnetocaloric properties of the Ni50Mn34In16 alloy has been investigated. The (Ni-Cu)50Mn34In16 alloys crystallize in the cubic L21 structure in austenite phase. While the Ms temperature is about 160 K for the Ni47.5Cu2.6Mn34.0In15.9 alloy, the martensitic transition is not observed for Ni45.5Cu4.6Mn33.8In16.1 alloy. To estimate the magnetic entropy change of the Ni47.5Cu2.6Mn34.0In15.9 alloy, the magnetization measurements as function of magnetic field are performed by continuous and noncontinuous heating methods. The Ni47.5Cu2.6Mn34.0In15.9 alloy shows the magnetostructural transition whose irreversible ratio is about 50% at 160 K. The magnetocaloric effect strongly depends on the sample history due to the occurrence of the irreversible magnetostructural transition. For the magnetic field change of 2 T, giant magnetoresistance value is about −68% that is rather big among the similar bulk alloys.  相似文献   

2.
Magnetic shape memory properties of polycrystalline Ni50Mn35In15−xSix were investigated. A reversible strain of more than 0.4% was observed for x = 0 at a magnetic field H = 5 T that was found to be associated with a field induced reverse martensitic transformation. The strains were found to increase with the substitution of In by Si and strains larger than 1% were observed for x = 2 at H = 5 T. Both the positive and negative strain changes were observed in the vicinity of martensitic transition temperatures. The strain in Ni50Mn35In15−xSix was found to depend on silicon concentration, and on samples texture.  相似文献   

3.
The effects of Cu substitution on the phase transitions and magnetocaloric effect of Mn50Ni40−xCuxSn10 Heusler alloys were investigated. With the increase of Cu content, the martensitic transformation (MT) temperature shifts substantially towards lower temperature, while the Curie temperature of austenite remains almost unchanged. The reverse MT temperature decreases from 180 to 171 K for Mn50Ni39Cu1Sn10 alloy as the magnetic field increases from 1 to 30 kOe. Under an applied magnetic field of 30 kOe, the maximum values of magnetic field induced entropy changes are 19.6, 28.9, and 14.2 J/kg K for x = 0, 1, and 2, respectively. The effective refrigerant capacities and hysteresis losses for these alloys were discussed in this paper.  相似文献   

4.
Zinc-blende BxAl1−xAs and BxAl1−xyInyAs alloys have been grown on exactly oriented (0 0 1)GaAs substrates by low pressure metalorganic chemical vapor deposition (LP-MOCVD). The influence of susceptor coating, growth temperature and gas-phase boron mole fraction on boron incorporation into AlAs has been comprehensively investigated. It has been found that boron incorporation into AlAs could be enhanced and the optimal growth temperature range of BxAl1−xAs alloys changed from 580 °C to 610 °C when SiC-coated graphite susceptors were replaced by the non-coated ones. In this study, the maximum boron composition x of 2.8% was achieved for the pseudomorphically strained BxAl1−xAs alloys. AFM measurements show that RMS roughness of BxAl1−xAs alloys increased sharply with the increase of gas-phase boron mole fraction. Raman spectra of BxAl1−xAs alloys show a linear increase of the BAs shift with boron composition x. Based on BAlAs deposition, bulk BxAl1−xyInyAs (x = 1.9%) quaternary alloy was grown lattice-matched to GaAs successfully. Moreover, 10-period BAlAs/GaAs and BAlInAs/GaAs MQW heterostructures were also demonstrated.  相似文献   

5.
6.
The Ce2Fe17−xMnx (x = 0-2) compounds demonstrate a complex temperature dependence of the magnetocaloric effect MCE, which is inverse in a narrow temperature interval just below Néel temperature TN and normal at higher or lower temperatures. The normal MCE exhibits two peaks in the vicinity of temperatures of ferromagnetic ordering ΘT and TN for compositions x = 0-0.35, 1.3-2 or one peak near TN for antiferromagnets with x = 0.5-1. The maximal change of the peak entropy −SM is about 3 J/kg K in a field of 5 T for the compounds with x = 0-0.5 at T ∼230 K close to TN. The drastic decrease of the MCE, by half, in the Ce2Fe17−xMnx system is traceable to a decrease of the spontaneous magnetization and the helical type of magnetic states in the compounds.  相似文献   

7.
We present the magnetic properties and the magnetic phase diagram of Ni50Mn50?xGax ferromagnetic shape memory alloys across a wide concentration range. Martensitic transformation, intermediate transformation, B2–L21 order–disorder transformation, Néel and Curie temperatures are determined for the prepared samples. The martensitic transformation temperature decreases with increasing Ga concentration and bends two times when crossing the Curie temperature and the intermediate-phase transformation temperature. Spontaneous magnetization and its composition dependence were also investigated. Composition dependence of the transformation temperatures and the spontaneous magnetization in the martensite phase of Ni50Mn50?xGax are compared with those of Ni50Mn50?xInx and Ni50Mn50?xSnx, revealing a similarity in the NiMn-based alloy systems.  相似文献   

8.
Amorphous Gd68−xNi32+x (x = −3, 0, 3) ribbons were prepared by melt-spinning method. The crystallization onset temperatures Tx1 for Gd68−xNi32+x amorphous ribbons with x = −3, 0, and 3 are 561, 568, and 562 K, respectively. All the samples undergo the second-order magnetic transition at temperatures between ∼122 (x = −3 and 3) and 124 K (x = 0). The Curie temperature TC does not change with the composition significantly. The maximum isothermal magnetic entropy changes (−ΔSM)max of Gd71Ni29, Gd68Ni32, and Gd65Ni35 amorphous ribbons for a magnetic field change of 0-5 T were 9.0, 8.0, and 6.9 J kg−1 K−1, respectively. Large values of the refrigerant capacity (RC) were obtained in these ribbons. For example, Gd71Ni29 amorphous ribbon has a maximum RC value of 724 J kg−1. Large magnetic entropy change and RC values together with high stability enable the Gd71Ni29 amorphous alloy a competitive candidate among the magnetic refrigeration materials working at temperatures near 120 K.  相似文献   

9.
The formation of impurity LixNi1−xO when synthesizing spinel LiNi0.5Mn1.5O4 using solid state reaction method, and its influence on the electrochemical properties of product LiNi0.5Mn1.5O4 were studied. The secondary phase LixNi1−xO emerges at high temperature due to oxygen deficiency for LiNi0.5Mn1.5O4 and partial reduction of Mn4+ to Mn3+ in LiNi0.5Mn1.5O4. Annealing process can diminish oxygen deficiency and inhibit impurity LixNi1−xO. The impurity reduces the specific capacity of product, but it does not have obvious negative effect on cycle performance of product. The capacity of LiNi0.5Mn1.5O4 that contains LixNi1−xO can deliver about 120 mAh g−1.  相似文献   

10.
A series of Gd100−xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys were prepared by arc-melting. The Curie temperature (TC) associated with the ferromagnetic-paramagnetic transitions, derived from M-T curves, show decrease in TC for as-cast alloys (∼279 K) as compared to as-cast Gd (∼292 K). No appreciable decrease in the |ΔSM|max values ∼4.6 J/kg K (0-2 T) and ∼8.6 J/kg K (0-5 T) were observed upon alloying Gd with Mn up to x ≤ 15 at.%. Refrigerant capacity (q) showed negligible variation ∼195 J/kg (0-2 T) and ∼450 J/kg (0-5 T) with increasing Mn (up to x ≤ 15 at.%) content. Similar values of |ΔSM|max and q coupled with ∼13 K decrease in TC for as-cast Gd100−xMnx (0 ≤ x ≤ 15) alloys as compared to Gd, suggests expansion of working temperature region of Gd upon alloying with Mn up to 15 at.%. Low cost, adjustable TC, favorable magnetocaloric properties make Gd100−xMnx alloys potential candidates as second-order transition based magnetic refrigerants for near room temperature air-conditioning and magnetic refrigeration.  相似文献   

11.
A series of Ni50−xCoxMn32Al18 (x = 3, 4, 5, 6, 7, and 8) alloys were prepared by the arc melting method. The martensitic transformation (MT) shifts to a lower temperature with increasing Co concentration and can be tuned to occur from a ferromagnetic austenite to a weak-magnetic martensite in the range of 6 ≤ x ≤ 8. The field-induced metamagnetic behavior was realized in Ni42Co8Mn32Al18 sample in which a large magnetic entropy change of 7.7 J/kg K and an effective refrigerant capacity value of 112 J/kg were obtained under the field of 60 kOe. The large magnetocaloric effect and adjustable MT temperature suggest that Ni–Co–Mn–Al alloys should have promising potential as magnetic refrigerants.  相似文献   

12.
Multicomponent Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloy powders milled for 60 h were prepared by mechanical alloying (MA). The structure and crystallization behavior were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA). Ni enhances the amorphisation of alloy powders. Particle size increases with increasing Ni content. Both onset crystallization temperature Tx and the first crystallization peak temperature Tp of the four alloys shift to a higher temperature with increasing heating rate while melting temperature (Tm) is just the opposite. Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloys all have a large supercooled liquid region ΔTx. The supercooled liquid region ΔTx increases and the crystallization activation energy E decreases with increasing Ni content.  相似文献   

13.
The effect of Ca on the microstructure and magnetocaloric effects has been investigated in the La1−xCaxFe11.5Si1.5 (x = 0, 0.1, 0.2 and 0.3) compounds. The introduction of Ca leads to the appearance of minor α-Fe and Ca-rich phases, which affects the actual compositions of the main phases for the Ca containing samples. With increasing the Ca concentration, the Curie temperature TC increases from 183 to 208 K, and the maximum magnetic entropy changes |ΔS| at the respective TC with a magnetic field change from 0 to 5 T are 21.3, 19.5, 16.9, and 11.2 J/kg K for x = 0, 0.1, 0.2, and 0.3, respectively. The nature of the magnetic transition changes from first-order to second-order with an increase in Ca concentration, which leads to a reduction of the hysteresis and a decrease of the magnetic entropy change. However, the relative cooling power for La1−xCaxFe11.5Si1.5 compounds remains comparable with or even larger than that of other magnetocaloric materials over a wide temperature range. The higher TC and the smaller hysteresis in comparison with those of the parent compound suggest that the La1−xCaxFe11.5Si1.5 compounds could be suitable candidates for magnetic refrigerants in the corresponding temperature range.  相似文献   

14.
Nanocrystalline Ni1−xMnxFe2O4 (x = 0; 0.17; 0.34; 0.5) ferrite powders were successfully synthesized using the sol-gel combustion method, by using nitrates as cations source and citric acid (C6H8O7) as combustion/chelating agent. The reaction advancement was observed by means of IR absorption spectroscopy, by monitoring two characteristic bands for the spinel compounds at about 600 cm−1 and 400 cm−1, respectively. The as-synthesized powders were characterized by IR spectroscopy, X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The magnetic study shows that the saturation magnetization decreases with increasing the Mn addition, as result of the particle size reduction. The dielectric properties were measured as a function of frequency in the range of 10 Hz to 1 MHz. The real part of permittivity has values of ∼88 at 1 kHz and ∼7 at 1 Hz for x = 0. An increasing dielectric permittivity with increasing the amount of Mn is observed. For all the investigated compositions, both the real and imaginary parts of permittivity decrease with frequency.  相似文献   

15.
NixMn0.8−xMg0.2Fe2O4; 0.1 ≤ x ≤ 0.35 was prepared by standard ceramic technique at sintering temperature 1200 °C using heating / cooling rate 4 °C/min. The samples were irradiated by Nd YAG pulsed laser with energy of the pulse 250 mJ. X-ray diffractograms reveal cubic spinel structure for all the samples before and after laser irradiation. After laser irradiation, better crystallinity was obtained in a form of an increase in the calculated crystal size. This increase was discussed as due to the change in the valence of some ions like Fe3+, Ni2+ and Mn2+. The conductivity of all the investigated samples decreases after laser irradiation and becomes temperature independent for a wider range than that before irradiation. This was ascribed to electron rearrangement after laser irradiation. Accordingly, these ferrites are recommended to be useful in electronic devices.  相似文献   

16.
Density functional FP-LAPW + lo calculations have been performed to study the structural, electronic and magnetic properties of Mg1−xMnxTe for compositional parameter x = 0.25, 0.50, 0.75 and 1. Our calculations reveal the occurrence of ferromagnetism in these compounds in which the transition-metal atom is ordered in a periodical way thereby interacting directly with the host atoms. Results extracted from electronic band structure and density of states (DOS) of these alloys show the existence of direct energy band gap for both majority- and minority-spin cases, while the total energy calculations confirm the stability of ferromagnetic state as compared to anti-ferromagnetic state. The total magnetic moment for Mg1−xMnxTe for each composition is found to be approximately 5 μB, which indicates that the addition of Mn content does not affect the hole carrier concentration of the perfect MgTe compound. Moreover, the s-d exchange constant (N0α) and p-d exchange constant (N0β) are also calculated which are in accordance with a typical magneto-optical experiment. The estimated spin-exchange splitting energies originated by Mn 3d states energies, i.e. ΔX(s-d) and ΔX(p-d), show that the effective potential for minority-spin is more attractive than that of the majority-spin. Also, the p-d hybridization is found to cause the reduction of local magnetic moment of Mn and produce small local magnetic moments on the nonmagnetic Mg and Te sites.  相似文献   

17.
In the present paper, DC magnetization investigation on the insulating nanocrystalline powder samples of Ti1−xMnxO2 (x = 0, 0.05, 0.10, and 0.15) prepared by simple chemical route is reported. Structural measurements revealed phase pure anatase structure of TiO2 when x ≤ 0.05 and a mixture of anatase and rutile TiO2 along with the signature of Mn3O4 phase for x > 0.05. Magnetic measurements exhibited the presence of ferromagnetic ordering at room temperature in samples having either small fraction of Mn or no Mn at all. This ferromagnetic signature is accompanied with paramagnetic contribution which is found to dominate with increase in Mn concentration. The Ti1−xMnxO2 sample having highest Mn concentration of x = 0.15 showed nearly paramagnetic behavior. However, at low temperatures, additional ferrimagnetic ordering arising due to Mn3O4 (TC = 42 K) is evidenced in the doped samples. Consistent with the XRD investigations, the isofield DC-magnetization measurements under field cooled and zero field cooled (FC-ZFC) histories corroborated the presence of Mn3O4 phase. Also, distinct thermomagnetic irreversibility has been observed above 42 K. These results are suggestive of presence of weak ferromagnetic ordering possibly due to defects related with oxygen vacancies.  相似文献   

18.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

19.
The electrical transport and magnetization measurements have been carried out on Al-doped polycrystalline intermetallic compounds Dy50−xAlxAg50 (x = 0, 0.3, 0.6, 1.2, 1.8) in a pulsed high magnetic field, in which multi-step magnetization is observed. Partial substitute of non-magnetic Al3+ for Dy3+ ions in the compounds increases the critical magnetic fields and the relative area of the magnetic hysteresis loop, which result from the pinning effect, lattice distortion, the change of coupling strength and dilution effect related to the Al3+ doping.The experimental results indicate that non-magnetic Al3+ ions and induced amorphous phase can pin the rotation and/or growth of magnetic domains, thus, the critical magnetic field can be enhanced by doping non-magnetic ions in the magnetic materials, especially in the permanent magnet materials.  相似文献   

20.
This investigation explores the electrical and magnetic properties of as-cast, -homogenized, and -deformed AlxCoCrFeNi (C-x, H-x, and D-x, respectively) alloys at various temperatures from 4.2 to 300 K. Experimental results reveal that carrier density of the alloys is of 1022-23 cm−3. H-x has a carrier mobility of 0.40-2.61 cm2 V−1 s−1. The residual electrical resistivity of the alloys varies from 100 to 220 μΩ cm. The temperature coefficient of resistivity (TCR) of H-2.00 is small (82.5 ppm/K). Therefore, defects in the lattice dominate electrical transportation. Some compositions exhibit Kondo-like behavior. At 300 K, H-0.50, H-1.25, and H-2.00 are ferromagnetic, while H-0.00, H-0.25, and H-0.75 are paramagnetic. Al and AlNi-rich phases reduce the ferromagnetism of single FCC and single BCC H-x, respectively. Spin glass behavior of some compositions is also observed. Alloys H-x are of the hole-like carrier type, and ferromagnetic H-x exhibits an anomalous Hall effect (AHE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号