首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
雷兵兵  严华 《计算机应用》2017,37(4):1149-1152
针对现有的NAND闪存垃圾回收算法中回收性能不高,磨损均衡效果差,并且算法内存开销大的问题,提出了一种基于逻辑区间热度的垃圾回收算法。该算法重新定义了热度计算公式,把连续逻辑地址的NAND内存定义为一个热度区间,以逻辑区间的热度来代替逻辑页的热度,并将不同热度的数据分开存储到不同擦除次数的闪存块上,有效地实现了数据冷热分离,并且节约了内存空间。同时,算法还构造了一种新的回收代价函数来选择回收块,在考虑回收效率的同时,还兼顾了磨损均衡的问题。实验结果表明,该算法与性能优异的FaGC算法相比,总的擦除次数减少了11%,总的拷贝次数减少了13%,擦次数最大差值减少了42%,内存消耗能减少了75%。因此,该算法有利于增加闪存可用空间,改善闪存系统的读写性能,延长闪存使用寿命。  相似文献   

2.
The existing NAND flash memory file systems have not taken into account multiple NAND flash memories for large-capacity storage. In addition, since large-capacity NAND flash memory is much more expensive than the same capacity hard disk drive, it is cost wise infeasible to build large-capacity flash drives. To resolve these problems, this paper suggests a new file system called NAFS for large-capacity storage with multiple small-capacity and low-cost NAND flash memories. It adopts a new cache policy, mount scheme, and garbage collection scheme in order to improve read and write performance, to reduce the mount time, and to improve the wear-leveling effectiveness. Our performance results show that NAFS is more suitable for large-capacity storage than conventional NAND file systems such as YAFFS2 and JFFS2 and a disk-based file system for Linux such as HDD-RAID5-EXT3 in terms of the read and write transfer rate using a double cache policy and the mount time using metadata stored on a separate partition. We also demonstrate that the wear-leveling effectiveness of NAFS can be improved by our adaptive garbage collection scheme.  相似文献   

3.
In general, NAND flash memory has advantages in low power consumption, storage capacity, and fast erase/write performance in contrast to NOR flash. But, main drawback of the NAND flash memory is the slow access time for random read operations. Therefore, we proposed the new NAND flash memory package for overcoming this major drawback. We present a high performance and low power NAND flash memory system with a dual cache memory. The proposed NAND flash package consists of two parts, i.e., an NAND flash memory module, and a dual cache module. The new NAND flash memory system can achieve dramatically higher performance and lower power consumption compared with any conventionM NAND-type flash memory module. Our results show that the proposed system can reduce about 78% of write operations into the flash memory cell and about 70% of read operations from the flash memory cell by using only additional 3KB cache space. This value represents high potential to achieve low power consumption and high performance gain.  相似文献   

4.
NAND flash memory has become the mainstream storage medium for both enterprise high performance computers and embedded systems. However, over the past several decades, the storage primitives that access secondary storage have remained unchanged, forcing NAND flash memory to serve merely as a block device like hard disk drive. Recently, several emerging storage primitives have been presented to explore the potential value of non-volatile memory devices. Although these primitives can significantly boost the access performance by providing virtual to logical address mappings, they still suffer from large RAM footprint to maintain the address mapping table and require further support for update operations.This paper presents ESP to optimize E merging S torage P rimitives with virtualization for flash memory storage systems. We propose two optimization strategies, virtual duplication and mapping prefetching to solve the critical issues in existing emerging storage primitives. The objective is to reduce unnecessary flash memory accesses and keep RAM footprint of address mapping table well under control. We have evaluated ESP on an embedded development platform. Experimental results show that ESP can significantly improve the write/read performance and reduce over 30% of garbage collection operations.  相似文献   

5.
NAND flash memory has become the major storage media in mobile devices, such as smartphones. However, the random write operations of NAND flash memory heavily affect the I/O performance, thus seriously degrading the application performance in mobile devices. The main reason for slow random write operations is the out‐of‐place update feature of NAND flash memory. Newly emerged non‐volatile memory, such as phase‐change memory, spin transfer torque, supports in‐place updates and presents much better I/O performance than that of flash memory. All these good features make non‐volatile memory (NVM) as a promising solution to improve the random write performance for NAND flash memory. In this paper, we propose a non‐volatile memory for random access (NVMRA) scheme to utilize NVM to improve the I/O performance in mobile devices. NVMRA exploits the I/O behaviors of applications to improve the random write performance for each application. Based on different I/O behaviors, such as random write‐dominant I/O behavior, NVMRA adopts different storing decisions. The scheme is evaluated on a real Android 4.2 platform. The experimental results show that the proposed scheme can effectively improve the I/O performance and reduce the I/O energy consumption for mobile devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Transaction support for filesystems has become a common feature in modern operating systems where data atomicity is achieved by writing transactions to the log region in advance. The logging mechanism is appropriate for flash storage devices due to the inherent nature of flash memory. However, the logging schemes inherently create multiple copies of data, leading to a decrease in the bandwidth of storage systems. In this paper, we present a simple and efficient invalidation scheme for multiple copies of data in a common journaling module. We identify two types of duplications, one in which there is an explicit duplication of the journal region and original region with the same data, and the other in which there is an implicit duplication of transaction commit operations. The invalidation of duplicated data reduces internal write and erase operations and garbage collection overhead for flash devices, which would otherwise increases external I/O bandwidth. Experimental results show that the overall performance improves roughly from 5% to 35% with the invalidation scheme for journal transactions.  相似文献   

7.
In NAND flash memory, once a page program or block erase (P/E) command is issued to a NAND flash chip, the subsequent read requests have to wait until the time-consuming P/E operation to complete. Preliminary results show that the lengthy P/E operations increase the read latency by 2× on average. This increased read latency caused by the contention may significantly degrade the overall system performance. Inspired by the internal mechanism of NAND flash P/E algorithms, we propose in this paper a low-overhead P/E suspension scheme, which suspends the on-going P/E to service pending reads and resumes the suspended P/E afterwards. Having reads enjoy the highest priority, we further extend our approach by making writes be able to preempt the erase operations in order to improve the write latency performance. In our experiments, we simulate a realistic SSD model that adopts multi-chip/channel and evaluate both SLC and MLC NAND flash as storage materials of diverse performance. Experimental results show the proposed technique achieves a near-optimal performance on servicing read requests. The write latency is significantly reduced as well. Specifically, the read latency is reduced on average by 46.5% compared to RPS (Read Priority Scheduling) and when using write–suspend–erase the write latency is reduced by 13.6% relative to FIFO.  相似文献   

8.
针对Android存储系统在闪存管理上存在较差的磨损均衡效果和较高的垃圾回收额外开销的缺陷,引入冷热数据分离策略,将文件按照不同热度写入对应热度的物理存储单元,同时改进垃圾回收策略,以达到良好的磨损均衡效果并减少垃圾回收额外开销。基于Android平台的实验结果表明,改进后的策略在有效减少NAND闪存垃圾回收额外开销的同时,还能有效改善其磨损均衡效果。  相似文献   

9.
王晋阳  严华 《计算机应用》2016,36(5):1430-1433
针对现有的NAND闪存垃圾回收算法对磨损均衡考虑不足的问题,提出了一种基于逻辑页冷热分离的NAND闪存磨损均衡算法。算法同时考虑了无效页的年龄、物理块的擦除次数以及物理块更新的频率,采用混合模式选择回收符合条件的物理块。同时,推导了一种新的逻辑页热度计算方法,并将回收块上有效页数据按照逻辑页的热度进行了冷热分离。实验结果表明,与GR算法、CB算法、CAT算法以及FaGC算法相比,该算法不仅在磨损均衡上取得了很好的效果,而且总的擦除次数与拷贝次数也有了明显减少。  相似文献   

10.
余进  严华 《计算机工程》2022,48(3):54-59
闪存因具有速度快、体积小等优点而广泛应用于数据存储领域,为提高NAND闪存的垃圾回收效率、延长闪存使用寿命,提出一种基于数据更新间隔的垃圾回收算法UIGC。计算闪存中空闲页的分散度,将其作为垃圾回收触发条件。从垃圾回收效率和磨损均衡效果2个方面出发,综合考虑块中无效页年龄累计和以及块中有效页比例,使用动态回收块选择和静态回收块选择相结合的策略来选择目标回收块,根据回收块中有效页数据更新间隔判断有效页热度,同时提出数据更新稳定性的概念来划分有效页的数据更新状态,将具有不同热度和更新状态的有效页数据分别存储在不同的空闲块中,从而提高块中数据的同步更新概率。实验结果表明,UIGC算法相较于CAT、FaGC等现有垃圾回收算法具有更优的垃圾回收效率和磨损均衡效果,并能有效延长闪存使用寿命。  相似文献   

11.
赵鹏  白石 《计算机学报》2012,35(5):972-978
基于闪存的大容量固态硬盘(SSD)能够在未来取代磁盘.它有很多优点,包括非易失性、低能耗、抗震性强等.然而,基于NAND闪存的存储块自身存在有限的擦除重写次数的问题一直影响着它的广泛应用.当闪存芯片达到擦除重写的限制次数后,存储块上的数据就会变得不可靠.目前研究者们已经提出了一些磨损均衡算法来解决这个问题.但当固态硬盘的存储容量不断增大后,这些算法需要越来越多的内存容量来保证运行.文中提出一种基于随机游走的磨损均衡算法来应用在大容量的固态硬盘上,该算法能够很大程度地减少内存消耗.实验表明所需内存容量仅为BET算法的15.6%,与此同时磨损均衡的性能并没有降低.  相似文献   

12.
The major advantages of flash memory such as small physical size, no mechanical components, low power consumption, and high performance have made it likely to replace the magnetic disk drives in more and more systems. Many research efforts have been invested in employing flash memory to build high performance and large-scale storage systems for data-intensive applications. However, the endurance cycle of flash memory has become one of the most important challenges in further facilitating the flash memory based systems. This paper proposes to model the aging process of flash memory based storage systems constructed as a Redundant Array of Independent Disks (RAID) by leveraging the semantic I/O. The model attempts to strike a balance between the program/erase cycles and the rebuilding process of RAID. The analysis results demonstrate that a highly skewed data access pattern ages the flash memory based RAID with an arbitrary aging rate, and a properly chosen threshold of aging rate can prevent the system from aging with a uniform data access pattern. The analysis results in this paper provide useful insights for understanding and designing effective flash memory based storage systems.  相似文献   

13.
Flash memory is becoming a major database storage in building embedded systems or portable devices because of its non-volatile, shock-resistant, power-economic nature, and fast access time for read operations. Flash memory, however, should be erased before it can be rewritten and the erase and write operations are very slow as compared to main memory. Due to this drawback, traditional database management schemes are not easy to apply directly to flash memory database for portable devices. Therefore, we improve the traditional schemes and propose a new scheme called flash two phase locking (F2PL) scheme for efficient transaction processing in a flash memory database environment. F2PL achieves high transaction performance by exploiting the notion of the alternative version coordination which allows previous version reads and efficiently handles slow write/erase operations in lock management processes. We also propose a simulation model to show the performance of F2PL. Based on the results of the performance evaluation, we conclude that F2PL scheme outperforms the traditional schemes.  相似文献   

14.
Due to the rapid development of flash memory technology, NAND flash has been widely used as a storage device in portable embedded systems, personal computers, and enterprise systems. However, flash memory is prone to performance degradation due to the long latency in flash program operations and flash erasure operations. One common technique for hiding long program latency is to use a temporal buffer to hold write data. Although DRAM is often used to implement the buffer because of its high performance and low bit cost, it is volatile; thus, that the data may be lost on power failure in the storage system. As a solution to this issue, recent operating systems frequently issue flush commands to force storage devices to permanently move data from the buffer into the non-volatile area. However, the excessive use of flush commands may worsen the write performance of the storage systems. In this paper, we propose two data loss recovery techniques that require fewer write operations to flash memory. These techniques remove unnecessary flash writes by storing storage metadata along with user data simultaneously by utilizing the spare area associated with each data page.  相似文献   

15.
Flash memory offers attractive features for storage of data, such as non‐volatility, shock resistance, fast access speed, and low power consumption. However, it requires erasing before it can be overwritten. The erase operations are slow and consume comparatively a great deal of power. Furthermore, flash memory can only be erased a limited number of times. To overcome hardware limitations, we use the non‐in‐place update mechanism that requires a cleaner to reclaim space occupied by obsolete data. To improve cleaning performance and prolong flash memory lifetime, we propose a new data reorganization method. By this method, data in flash memory are dynamically classified and clustered together according to their accessing frequencies. Experimental results show that this clustering technique significantly improved the cleaning performance for a variety of cleaning algorithms. The number of erase operations performed is greatly reduced and flash memory lifetime is prolonged. Even wearing is ensured as well. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
利用页面重构与数据温度识别的闪存缓存算法   总被引:1,自引:0,他引:1  
基于闪存的固态盘(SSD)具有比磁盘更加优越的性能,并且在桌面系统中逐渐替代磁盘.但是,尽管在SSD中嵌入了DRAM作为缓存,闪存在不断写入的过程中也可能产生不稳定的写性能,主要是因为逻辑页写入时会频繁引发非覆盖写和垃圾回收操作.针对此问题,提出了一种叫作PRLRU的新型闪存缓存管理方法,通过页面重构机制以及数据温度识...  相似文献   

17.
Existing SSD technology exploits the properties of NAND flash and leverages NAND flash with a controller running FTL algorithms to improve system performance. On one hand, however, in this black-box-modeled structure, data semantic information is hard to be transferred and interpreted by conventional interfaces. Hence, SSD firmware fails to make full use of the performance potential of SSD by utilizing semantic information. Moreover, the host cannot obtain physical characteristics and statistical information about SSD, failing to be used by the file system or I/O scheduling algorithm designed for the disks. On the other hand, in SSD-based storage systems, persistent data are stored in the NAND flash and however manipulated in DRAM, causing the decoupled inefficiency. The data being closer to the processors are much easier to be lost due to the volatile property of DRAM, leading to serious data reliability problems. What’s more, restrictive read/program granularity and out-of-place updates limit the performance while flash suffers from small size operations.In order to address these problems, we propose a user-visible solid-state storage system with software-defined fusion methods for PCM and NAND flash. PCM is used for improving data reliability and reducing the write amplification of NAND flash as PCM shows some outstanding features, such as in-place updates, byte-addressable, non-volatile properties and better endurance. In this system, we manage the storage device as user-visible structure rather than black-box-modeled structure. In detail, we expose the number of channels, erase counts and data distribution of PCM/NAND flash to the host and design FTL algorithm closer to file system to obtain more semantic information of data accessing. PCM can be software-defined as the same level storage or buffer of NAND flash to reduce the WA (Write Amplification) of NAND flash and improve the data reliability. Moreover, some key software components (such as FTL, I/O scheduling and buffer management) are also reconfigurable and operated easily combined with physical characteristics. To achieve these design goals, we implement a Host Fusion Storage Layer (HFSL) and redesign the lengthy I/O path. Applications or filesystem can access PCM/flash directly via provided interfaces by HFSL without passing traditional I/O subsystem. Moreover, we provide the system management software to make the storage system can be easily software-defined by the upper-level system. We implement our software-defined fusion storage system in our actual hardware prototype and extensive experimental results demonstrate the efficiency of the proposed schemes.  相似文献   

18.
Most superblock-based NAND flash storage systems employ a high-speed write buffer to enhance their writing performance. The main objective is to bind data of adjacent addresses as much as possible in order to transform random data into sequential data, which then facilitates interleaving in the storage system. We have designed a new superblock-based buffer scheme for NAND flash storage systems that improves on traditional schemes. For buffer management, a series of lists need to be specified to monitor the dataflow changes in the current state of the buffered data and the NAND flash memory in order to maximize interleaving during the flush operation. Experimental results show that the proposed scheme achieves higher write speed performance in almost all configurations, with greater than 50% speedup in some cases. Our proposed flash-aware write buffer (FAWB) scheme achieves this higher write performance with a required buffer space of only 1/4th–1/8th that of other schemes, resulting in higher efficiency.  相似文献   

19.
持久性内存具有非易失性、可字节寻址、随机读写速度快、能耗低以及可扩展性强等优良特性,为大数据存储和处理提供了新的机遇.然而,持久性内存系统的故障一致性问题为其广泛推广应用带来挑战.现有一致性保证的研究工作通常以增加额外读写为代价,对持久性内存系统的性能和寿命在时间和空间维度产生了一定的影响.为了降低该影响,提出一种耐久...  相似文献   

20.
The design of flash memory systems for smart devices differs significantly from traditional storage systems, because most updates involve the random data. A previously proposed algorithm known as Switchable Address Translation (SAT) enhances the performance of multimedia storage devices; however, it exhibits low space utilization and executes intense monitoring. In this paper, we propose the Random Data-Aware Flash Translation Layer (RDA), which enhances the performance and durability of smart devices. RDA improves low space utilization using the state transition. Furthermore, RDA prolongs the durability of the flash memory by spreading out the random data. According to our experiment results, RDA reduces the total number of erase operations and narrows the deviation of erase operations between the physical blocks, when compared to SAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号