首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of regenerated silk fiber is limited due to its inferior mechanical properties in spite of high potential in a wide variety of applications. Many studies have been conducted in order to improve the mechanical properties of the regenerated silk materials, but no one has so far suggested an obvious solution. Meanwhile, some reports showed evidence that structural development of silk protein can be manipulated by physical interactions between silk fibroin (SF) and silk sericin (SS) during the regeneration process, especially in recrystallization process of SF. Such a hypothesis suggests a promising clue to enhance the mechanical properties of silk-based materials. Therefore, in this study, we tried to elucidate how SS can promote developing the molecular chain orientation of SF, resulting in an improvement of mechanical properties of regenerated silk fiber during spinning process. The tensile properties of the regenerated silk fiber were significantly improved compared to those of pure SF fiber when a proper amount of SS was blend with SF; both tenacity and breaking elongation increased by approximately 30 % and 70 % at three fold draw ratio, respectively. Quantitative analysis of X-ray diffraction and Herman’s orientation coefficient confirmed that such an improvement of tensile property was mainly caused by an increase of molecular orientation induced by sericin during the drawing process.  相似文献   

2.
Silk sutures are already used in surgery. Silk is a natural protein fiber and easily prone to microbial infection hence we have developed novel antimicrobial silk braided sutures. Braided silk sutures were fabricated using a circular braiding machine with a 16 carrier arrangement normally used to produce braided structures. The same structure was used to manufacture braids with three different take-up speed levels obtained by changing the cogwheel ratio on the braiding machine. The influence of braid angle, test parameters such as gauge length and extension rate on tenacity and knot strength of braided silk sutures were studied. Silk sutures fabricated at higher braid angle, tested at shorter gauge length and greater test speed showed lower values of tenacity and knot strength. Chitosan was applied on braided silk sutures to impart antimicrobial characteristics. The Scanning electron microscopy study reveals the absence and presence of chitosan on the surface of untreated and treated sutures respectively. The antimicrobial properties of chitosan and tetracycline hydrochloride drug were tested using Agar diffusion method SN 195920 both when applied independently and collectively on silk sutures against Escherichia coli and Staphylococcus aureus. The combined antimicrobial effect of chitosan and tetracycline hydrochloride drug is very good and can be used to develop antimicrobial silk sutures for providing protection against microbial infections.  相似文献   

3.
Fabricating a hydrogel with high strength and toughness is still a challenge in many fields. Here, we prepared gliadin-based hydrogels by chemical cross-linking gliadin in acetic acid solution (GS) with glutaraldehyde (GA). Subsequently, the overall properties of the fabricated hydrogels were systematically investigated in terms of their mechanical properties, swelling ratio, weight loss, thermal stability, and the chemical/physical interactions in hydrogels. Results showed that the gliadin-based chemically cross-linked hydrogels exhibited excellent mechanical properties. The optimized hydrogel exhibited the compressive stress of 1.8 MPa at a strain of 70%, and an excellent self-recovery property after 30 cycles of loading-unloading treatments. The strength and toughness of the hydrogels could be tailored by adjusting the ratio of GS/GA. The chemical cross-linking (aldehyde-ammonia reaction) was the main molecular interaction in the hydrogels, including single-/multi-site crosslinking, and the hydrogen bond was the only physical cross-linking in the hydrogels. Moreover, the swelling ratio of the fabricated hydrogels performed a concentration negative-dependency in GA or GS concentration. And a higher GS concentration (40%) with an appropriate GA content (3.0%) could resist the degradation of hydrogels. In addition, the thermodynamic properties of hydrogels also improved by the GA addition. Overall, these findings suggested that gliadin can be applied for fabricating hydrogels with tunable mechanical properties, which will unlock the high-utilization of gliadin as biopolymer and biocompatible materials.  相似文献   

4.
Hybrid yarn was produced by twisting silk with nylon covered lycra yarn. Silk of 20 D in warp and hybrid yarn in weft was woven to develop lustrous woven stretch fabrics for sari blouse. Silk and hybrid yarn fabrics were produced in three different weaves namely plain, crepe and sateen. An in-depth study was carried out to understand the effect of weave on thermal comfort; low stress mechanical properties, total hand value and stretch properties. Nine blouses (3 samples× 3 figures) were constructed from three different woven stretch materials for fit assessment and objective pressure comfort test. The effect of fabric weave, low stress mechanical properties, total hand value and stretch properties on fit and pressure comfort of silk/hybrid yarn stretch fabrics were analyzed. Sateen weave silk/hybrid yarn stretch fabric shows higher total hand value, stretch properties and better thermal comfort properties. Sateen and crepe weave stretch fabrics provided good fit. Sateen weave fabric exerted lower clothing pressure value in the range of 3-12 mmHg at all body locations in standing position and in different postures.  相似文献   

5.
Protein concentration, pH, the types and concentrations of metallic ions, and extensional flow are thought to be important environment parameters affecting the natural spinning process. In this study, we investigate the effects of the types and concentrations of metallic ions (Ca2+, Mg2+, and K+ ions), pH, and silk fibroin concentration on the sol-gel transition and the rheological behavior of a regenerated silk fibroin (RSF) aqueous solution. The results show that with an increase in the silk fibroin concentration, the weak acidic RSF aqueous solutions containing Mg2+ or Ca2+ ions undergo a phase transition to a weak gel state. Moreover, the rheological characterization of RSF aqueous solutions shows a dramatic change, and their apparent viscosities increase by almost three orders of magnitude and approach the apparent viscosity of the native dope in the silkworm gland. By using conventional pressure equipment, we investigate the dry-spinnability of weak gels. Further, we observe that the as-spun fibers exhibit a smooth surface and have inferior mechanical properties. The structure of the as-spun fibers is predominantly in a random coil or Silk I conformation.  相似文献   

6.
Silk fibroin (SF) was dissolved in calcium chloride/ethanol/water mixture (1/2/8 in mole ratio) at 70°C for 4 h. The dissolved silk fibroin was regenerated by casting the dialyzed solution into the films. The films were treated with 50% aqueous solution of methanol for different times, and their antithrombogenicity was evaluated byin vitro andin vivo tests.In vivo blood tests were made by a method of peripheral vein indwelling suture. It was found that the silk fibroin had a good anti-thrombogenicity and an absorbability even though the polymer showed foreign body reaction. Finally, the blood compatibilty of silk fibroin films which were subjected to structural change by the methanol treatment, was examined in connection with their interfacial surface energy, and a correlation between these properties was found to be present.  相似文献   

7.
The use of natural resources, especially processing wastes, as low cost and environmentally friendly alternative aiming high value-added applications is a subject of broad interest. Since the Brazilian silk production annually generates a large amount of waste during the silk fibers processing, this work explores the preparation and characterization of silk fibroin hydrogels using spinning waste silk fibers from textile processing and the processed ones. Hydrogels were obtained directly by dialyzing silk fibroin solutions against frequent changes of water until the gelation point and then lyophilized and characterized in terms of their morphology, crystallinity, thermal resistance and secondary structure. X-ray diffraction analysis revealed the presence of β-sheet conformation related to sol-gel transition. FT-IR spectra indicated the coexistence of random coil (silk I) and β-sheet (silk II) structures, with predominance of β-sheet conformation for hydrogels from processed silk fibers. From thermogravimetric analysis the presence of β-sheet secondary conformation was demonstrated by a degradation peak around 292 °C for both hydrogels. Freeze-dried hydrogels presented sheet or leaf like morphology and no significant change was observed among the hydrogels from waste silk fibers and processed ones. These characteristics suggest that silk fibroin hydrogels prepared from spinning waste silk fibers and obtained directly by dialysis can be potential candidates for biomaterials application, such as drug delivery systems and for wound dressings.  相似文献   

8.
Experimental investigations have been carried out to modify the surface properties of natural Kanchipuram silk (pattu) fibers using a low temperature DC glow discharge air Plasma. Silk is an externally spun fibrous protein secretion formed into fibers. Plasma treatment is an eco-friendly, dry, and clean process over wet chemical method and does not suffer from any environmental and health concerns. Experiments have been performed considering three parameters such as discharge current, treatment time, and working pressure. The structural, thermal, morphological, optical, and mechanical studies of raw and plasma treated silk fibers have been obtained out using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), thermo gravimetric analyzer (TGA), scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS), diffuse absorbance spectroscopy, and tensile test. A comparative study has been done for the untreated and different treated fibers. Various characterization analyses reveal that surface roughness of the plasma treated silk fiber is increased and also crystallite size of treated samples is enhanced, plasma treated silk fibers maintain the whiteness effect and it is observed that UV transmittance region (A & B) is more for the treated fiber which signifies enhanced UV protection.  相似文献   

9.
Electro-spun silk web has attracted attention for biomedical applications because of its excellent bio-compatibility and facile fabrication method. Because biomedical applications require various performances of silk web, many studies have been conducted on the effect of the variables associated with their preparation on the structure and properties of silk web. In the present study, the effect of residual sericin content on the morphology, structural characteristics, and properties of electrospun regenerated silk web was examined. The regenerated silk without sericin (i.e., silk with 100 wt% fibroin) did not show good electro-spinnability. However, the electro-spinnability improved remarkably above a sericin content of 0.6 wt%. The crystallinity index of the electro-spun silk increased at 0.6 wt% sericin content and decreased above 8.2 wt% sericin. The mechanical properties of the electro-spun silk webs showed a similar trend as their crystallinity indices. The breaking strength and elongation improved significantly at 0.6 wt% sericin content and both parameters gradually decreased above this value. The thermal stability of the silk web decreased slightly upon increasing the sericin content.  相似文献   

10.
A pineapple protease, bromelain, was used to improve the dyeing properties of protein fibers such as wool and silk. The optimal condition for the activity of the pineapple protease was about 60 °C at pH 7. The wool and silk were treated with the protease extracted from a pineapple and the K/S values of the dyed wool and silk were measured using a spectrophotometer in order to compare the dye uptake. The protease treatment enhanced the dyeing properties of protein fibers without severe changes in mechanical properties. The surface appearances of protease-treated fibers were observed by microscopy.  相似文献   

11.
The effects of the aldehydes crosslinkers on properties of the BC/PVA nanocomposite hydrogels were investigated. BC as the reinforcement and PVA as the matrix materials of the BC/PVA nanocomposite hydrogels, the hydrogels were prepared in coagulating bath of sodium sulfate and cross-linked with kinds of aldehydes. The hydrogels were characterized by Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), Equilibrium swelling ratio (ESR) tests, mechanical properties tests, thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) analysis. It was found that the dialdehyde (glyoxal, glutaraldehyde) crosslinkers were more efficient than monoaldehyde (formaldehyde, acetaldehyde) crosslinkers. The ESR, mechanical properties of the BC/PVA nanocomposite hydrogels were obviously influenced by aldehydes crosslinkers. However, their thermo stability and crystallinity were scarcely influenced. The nanocomposite hydrogels described in this study provides information for further development and optimization of a variety of nanofiber-polymer matrix composite hydrogels.  相似文献   

12.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

13.
Different silk substrates in form of spun silk tops, nonwoven web, yarn, and fabric were coated with electrically conducting doped polypyrrole (PPy) by in situ oxidative polymerization from an aqueous solution of pyrrole (Py) at room temperature using FeCl3 as catalyst. PPy-coated silk materials were characterized by optical (OM) and scanning electron (SEM) microscopy, FT-IR spectroscopy, and thermal analysis (DSC, TG). OM and SEM showed that PPy completely coated the surface of individual silk fibers and that the polymerization process occurred only at the fiber surface and not in the bulk. Dendrite-like aggregates of PPy adhered to the fiber surface, with the exception of the sample first polymerized in the form of tops and then spun into yarn using conventional industrial machines. FT-IR (ATR mode) showed a mixed spectral pattern with bands typical of silk and PPy overlapping over the entire wavenumbers range. DSC and TG showed that PPy-coated silk fibers attained a significantly higher thermal stability owing to the protective effect of the PPy layer against thermal degradation. The mechanical properties of silk fibers remained unchanged upon polymerization of Py. The different PPy-coated silk materials displayed excellent electrical properties. After exposition to atmospheric oxygen for two years a residual conductivity of 10–20 % was recorded. The conductivity decreased sharply under the conditions of domestic washing with water, while it remained essentially unchanged upon dry cleaning. Abrasion tests caused a limited increase of resistance. PPy-coated silk tops were successfully spun into yarn either pure or in blend with untreated silk fibers. The resulting yarns maintained good electrical properties.  相似文献   

14.
Cross-linked hydrogels of chitosan/poly(vinyl alcohol) (PVA)/oxidized cellulose nanowhiskers (CNWs) were prepared by using oxidized CNWs as a cross-linker. The effects of the oxidation level of CNWs on the swelling behavior, thermal stability, viscoelastic properties and compressive strength of the hydrogels were studied. Chemical cross-links, hydrogen bonds, as well as nanofiller reinforcement between the three materials played a major role in determining the properties of the hydrogels. Swelling test results showed that the incorporation of oxidized CNWs decreased the water absorbability of the hydrogels due to the increase in cross-linking degree. Viscoelastic properties of the hydrogels with oxidized CNWs was increased by 537 % in storage modulus, from 4.65 kPa to 29.6 kPa. Compressive strength of 181.5 kPa at 50 % strain was observed from the cross-linked hydrogels, compared with 21.2 kPa of the non-cross-linked hydrogels. The thermal experiments showed that the chemical cross-linking slightly increase the resistance toward thermal degradation of the hydrogels.  相似文献   

15.
Semi-interpenetrating polymeric network (semi-IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-sodium methacrylate) [P(HEMA-co-SMA)], and chitosan with different molecular weights were prepared by crosslinking with ethylene glycol dimethacrylate (EGDMA) and poly(ethylene glycol) diacrylate (PEGDA) and their gelation time, water content, mechanical properties, and morphology were investigated. In consideration of the influence of the molecular weight of chitosan, there is no big difference in the water content, while tensile properties and compressive modulus increased as the molecular weight of chitosan increased. The water content increased and tensile properties and compressive modulus decreased with increasing SMA concentration. Considering the effect of the crosslinking agent, PEGDA had higher water content and lower tensile and compressive moduli than EGDMA. It is suggested that PHEMA/chitosan and P(HEMA-co-SMA)/chitosan semi-IPN hydrogels with different structures and physical properties can be prepared depending on the molecular weight of chitosan, the copolymerization with SMA, and the crosslinking agent type.  相似文献   

16.
We successfully prepared optically transparent silk fibroin-cellulose nanofiber (CN) composite films from solvent casting using a stable CN suspension in an aqueous silk fibroin solution. The transmittance of the silk fibroin composite films was observed by a UV-visible spectrophotometer. The secondary structural change of the silk fibroin caused by the incorporation of CNs was characterized using Fourier transform infrared spectroscopy. A tensile test was carried out to investigate the mechanical properties. The results showed that the composite film exhibited visible-light transmittance of 75 %, and its mechanical strength and Young’s modulus were increased by 44 % and 35 %, respectively, as compared to a neat silk fibroin film.  相似文献   

17.
Silk fibrillation, one major weakness of silk fibers, can lead to undesirable fabric appearance. In this research, an effective method for reducing the fibrillation of silk fibers through the graft copolymerization with methyl methacrylate (MMA) has been developed. The major copolymerization factors such as the initiator concentration, MMA monomer concentration, reaction time and temperature were investigated. An AATCC Crockmeter was used to rub the fabric to simulate the abrasion in production to generate the fibrillation. The microscope observation and the evaluation of fibrillation index (FI) were applied to assess the degree of fibrillation of silk fibers. The optimum graft copolymerization factors were obtained. Instrumental analyses, such as FTIR, TG and SEM, proved that the silk fabric had been successfully grafted with MMA monomers. The fibrillation of the grafted silk fibers was considerably reduced since the coated PMMA can protect the silk fiber. In addition, the physical properties such as the crease recovery, breaking strength, and the breaking length of the grafted silk fabrics were also improved.  相似文献   

18.
The aim of this study was to compare physical, mechanical and biological properties of 3-dimensional scaffolds prepared from Bombyx mori silk fibroin (SF), fibroin blended with collagen (SF/C), and fibroin blended with gelatin (SF/G) using a freeze-drying technique. The prepared scaffolds were sponge-like structure that exhibited homogeneous porosity with highly interconnected pores. Average pore size of these scaffolds ranged from 65–147 μm. All biodegradable scaffolds were capable of water absorption of 90 %. The degradation behavior of these scaffolds could be controlled by varying the amount of blended polymer. The SF/C and SF/G scaffolds showed higher compressive modulus than that of SF scaffolds which could be attributed to the thicker pore wall observed in the blended constructs. The less crystalline SF structure was observed in SF/G scaffolds as compared to SF/C scaffolds. Thus, the highest compressive modulus was observed on SF/C matrix. To investigate the feasibility of the scaffolds for cartilage tissue engineering application, rat articular chondrocytes were seeded onto the scaffolds. The MTT assay demonstrated that blending collagen or gelatin into SF sponge facilitated cell attachment and proliferation better than SF scaffolds. The blended SF scaffolds possessed superior physical, mechanical and biological properties in comparison to SF scaffolds and showed high potential for application in cartilage tissue engineering.  相似文献   

19.
This article describes a new process for strengthening natural silk fibers. This process is simple yet effective for mass production of high strength silk fibers, enabled by drawing at a lower temperature and immediately heat setting at a higher temperature. The processing conditions were investigated and optimized to improve the strength. Silk fibers drawn to the maximum ratio at room temperature and then heat set at 200 °C show best tensile properties. Some salient features of the resulting fibers are tensile strength at break reaching 533±10.2 MPa and Young’s modulus attaining 12.9±0.57 GPa. These values are significantly higher than those of natural silk fibers (tensile strength increased by 44 % and Young’s modulus by 135 %). Wide-angle X-ray diffraction and FTIR confirm the transformation of silk I to silk II crystalline structure for the fiber obtained from this process. DSC and TGA data also provide support for the structural change of the silk fiber.  相似文献   

20.
We studied the key characteristics of a novel silk yarn reeled from fresh cocoons. Compared with traditional silk yarn, this novel silk yarn displayed better mechanical properties, especially in terms of a higher breaking stress and toughness, and exhibited a different surface morphology. A cross-sectional observation and the sericin content results illustrated that different sericin coatings on the silk yarn reeled from fresh cocoons surface did not improve the mechanical properties. The degumming and tensile testing analysis indicated that degummed silk fibroin of novel silk yarn is able to resist deformation and fracture better than silk fibroin of traditional silk yarn. The FTIR results revealed that the selected techniques is an important contributor to the silk fibroin mechanical properties, because novel technique brought higher percentage beta-sheet structures in novel silk yarn fibroin than traditional silk yarn. The new technique that using novel silk yarn has improved its mechanical properties and it is expected that the silk yarn with superior mechanical properties could be used in fabrics transistors, electrodes and reinforced biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号