首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
三角形的双圆半径的一个"孪生"命题   总被引:1,自引:1,他引:0  
文 [1 ]给出如下关于三角形双圆半径的一个命题 :设△ ABC的外接圆半径为 R,内切圆半径为 r,顶点 A、B、C到内心的距离分别为 a0 、b0 、c0 ,则  4 Rr2 =a0 b0 c0 .今给出此命题所引伸出的一个“姊妹”命题 :命题 设△ ABC的外接圆半径为 R,旁切圆半径为 r′,顶点 A、B、C到对应的旁心的距离分别为 a′0 、b′0 、c′0 ,则  4 Rr′2 =a′0 b′0 c′0 .证明 如图 1 ,∵  r′=a′0 sin A2 =b′0 cos B2=c′0 cos C2 ,∴  r′3=a′0 b′0 c′0 sin A2 cos B2 cos C2 1又 △ =12 r′( b c - a) =Rr′( sin B sin C - sin A…  相似文献   

2.
用三角法妙证欧拉不等式   总被引:2,自引:0,他引:2  
本文先给出欧拉不等式:若三角形的外接圆半径为R,内切圆半径为r,则R≥2r.现给出一种三角证法.证明 设△ABC的三边长分别为a、b、c,面积为S,外接圆半径为R,内切圆半径为r.由正弦定理得 a=2RsinA b=2RsinB c=2RsinC∴S=12absinC=2R2sinAsinBsinC=12r(a b c)=Rr(sinA sinB sinC)∴2Rr=sinA sinB sinCsinAsinBsinC(1)又∵sinA sinB sinC33≥sinAsinBsinC∴1sinAsinBsinC≥27(sinA sinB sinC)3(2)在△ABC中,∠A、∠B、∠C中至少有2个锐角,不妨设∠C为锐角,∵sinA sinB sinC sinπ3=2sinA B2cosA-B2 2sinC π32cosC-…  相似文献   

3.
文[1]给出如下一个不等式证明问题.△ABC的外接圆和内切圆半径分别为R,r.证明:sin2A+sin2B+sin2C≥3Rr·本文将给出此问题的一个简单证明.证明记△ABC的面积和半周长为Δ,s,三边长为a,b,c,则Rr=RΔs=bc2sRinsA=R(abc+sibnA+c)=si2nAsin+AssiinnBBs+insiCnC=4co2ssiA2nAcsoisnBB2sicnoCs2C=4sin2AsinB2sin2C,从而可知sin2AsinB2sinC2=4rR,又欧拉(Euler)不等式R≥2r可得12≥Rr,所以sin2Asin2BsinC2=4rR=212Rr≥Rr3,显然sin2A,sin2B,sin2C>0,故由均值不等式可知sin2A+sinB2+sinC2≥33sin2Asin2Bsin2C≥3Rr,证毕.一道数学问题的简单证明!350007$福建省福州市第十六中学@侯雪花邹守义.数学问题1779.数学通报.2009,2  相似文献   

4.
半角的余弦和上界的加强   总被引:1,自引:1,他引:0  
设 a、b、c是△ ABC的三内角 A、B、C所对的边长 ,s=12 (a b c) ,R,r分别是△ ABC的外接圆半径和内切圆半径 .1 957年 ,R.Kooistra给出了三角形的三内角的半角余弦和的一个上界[1] .cos A2 cos B2 cos C2 ≤ 3 32 . (1 )本文给出 (1 )式上界的一个加强 :cos A2 cos B2 cos C2 ≤ 6 3 r2 R. (2 )证明 因为 cos A2 =s(s- a)bc ,cos B2= s(s- b)ca ,cos C2 =s(s- c)ab ,利用恒等式 abc=4Rrs,a2 b2 c2 =2 (s2 - 4 Rr- r2 )以及柯西不等式 ,我们有cos A2 cos B2 cos C2=s(s- a)bc s(s- b)ca s(s- c)ab≤ 3 [s(s- a)bc s(s…  相似文献   

5.
边长为等差数列的三角形的一个常用结论   总被引:1,自引:0,他引:1  
关于边长为等差数列的三角形 ,文 [1 ]给出了一系列性质 (共 1 8个 ) ,这些性质形式多样 ,结构优美 ,精彩纷呈 ,但增加了记忆负担 ,且都可以由其中的一个性质 cos A - C2 =2 cos A +C2 导出 ,各性质的逆命题也都成立 .为此 ,本文仅给出一个核心、完善、常用的结论 ,并介绍它在求值、化简和证明中的广泛应用 .结论 在△ ABC中 ,若 a、b、c分别是角 A、B、C的对边 ,则 a、b、c成等差数列的充要条件是cos A - C2 =2 cos A +C2 (或 cos A - C2 =2 sin B2 ) .证明 由 B =π - (A +C) ,得B2 =π2 - A +C2 ,∴  sin B2 =cos A +C2 ,cos B2 =sin A +C2 ,∴  a +c=2 b    sin A +sin C=2 sin B   2 sin A +C2 cos A - C2 =2 . 2 sin B2 cos B2      cos A - C2 =2 sin B2     cos A - C2 =2 cos A +C2 .故原命题成立 .下面就其在化简、求值及证明...  相似文献   

6.
三边成等差数列的三角形有下列性质定理设△ABC中a、b、c是角A、B、C的对边,则a、b、c成等差数列的充要条件是tg(A/2)tg(C/2)=1/3。证明△ABC的三边a、b、c成等差数列(?)2b=a+c(?)2sinB=sinA+sinC(?)4sin(B/2)cos(B/2)=2sin[(A+C)/2]cos[(A-C)/2](?)2sin(B/2)cos(B/2)=cos(B/2)cos[(A-C)/2](?)2sin(B/2)=Cos[(A-C)/2](?)2Cos[(A+C)/2]=cos[(A-C)/2](?)2cos(A/2)cos(C/2)-2sin(A/2)sin(C/2)=cos(A/2)cos(C/2)+sin(A/2)sin(C/2)(?)cos(A/2)cos(C/2)=3sin(A/2)sin(C/2)(?)tg(A/2)tg(C/2)=1/3 由于上述箭头都是可逆的,因此定理得证。应用这个性质来解决三边成等差数列的三角形的有关问题,往往是奏效的。  相似文献   

7.
关于双圆四边形的双圆半径的一个性质   总被引:1,自引:1,他引:0  
文 [1 ]介绍了三角形双圆半径的如下一个命题 :设△ ABC的外接圆半径为 R,内切圆半径为 r,顶点 A、B、C到内心的距离分别为 a0 ,b0 ,c0 ,则     4Rr2 =a0 b0 c0 (1 )文 [2 ]介绍了 (1 )式的一个引申命题 :设 I是△ ABC的内心或旁心 ,r是内切圆半径或对应的旁切圆半径 ,R是外接圆半径 ,则   4Rr2 =IA . IB . IC (2 )笔者经研究发现 ,双圆四边形 (既有外接圆 ,又有内切圆的四边形 )也有如下有趣性质 .定理 设双圆四边形 ABCD的外接圆半径、内切圆半径分别为 R、r,内心为 I,则有IA.IB.IC.ID=2 r3 (4 R2 r2 - r) . (3 )图…  相似文献   

8.
垂足三角形内切圆半径之间的一个不等式   总被引:1,自引:1,他引:0  
定理 若△ DEF是锐角△ ABC的垂足三角形 ,且 BC =a,CA =b,AB =c,△ AEF、△ BDF、△ CDE的内切圆分别为⊙ IA、⊙ IB、⊙ IC,其半径依次为 r A、r B、r C,则有ar A+br B+cr C≥ 12 3.证明 ∵  BE⊥ AC,CF⊥ AB,∴ ∠ BEC =∠ CFB =90°.又∵  E、F在 BC的同侧 ,∴  B、C、E、F四点共圆 ,∴ ∠ AEF =∠ B,∠ AFE =∠ C,    △ AEF∽△ ABC,     EFBC=AEAB.在 Rt△ ABE中 ,cos A =AEAB,∴  EFBC=cos A,即 EF =a cos A.同理  DF =b cos B,DE =c cos C.连结 IAE、IAF,作 IAG⊥ EF…  相似文献   

9.
Cordon不等式的逆向不等式   总被引:2,自引:0,他引:2  
设a,b,c分别为△ABC的三条边长,ha,hb,hc分别为三边a,b,c上的高,ta,tb,tc分别为△ABC三个内角的平分线长,R,r分别为△ABC的外接圆半径、内切圆半径,p为△ABC的半周长,表示对a、b、c循环求和.文[1]介绍了1967年,V.O.Cordon建立的不等式:a2hb2 hc2≥2.本文建立Cordon不等式的逆向不等式:a2hb2 hc2≤Rr.当且仅当△ABC为正三角形时等号成立.证明 在△ABC中,ha=c.sinB,hb=a.sinC,hc=a.sinB.∴hb2 hc2=a2sin2C a2sin2B=a24R2(b2 c2)∴hb2 hc2a2=14R2(b2 c2),a2hb2 hc2=4R2b2 c2.∴a2hb2 hc2=4R21b2 c2≤4R212bc=4R2abca2=4R2pabc…  相似文献   

10.
题目已知sin2α=a,cos2α=b,则tan(α π4)的值为()(A)b1-a.(B)1 ab.(C)1 a b1-a b.(D)a-b 1a b-1.解法1 tan(α π4)=sin(α π4)cos(α π4)=2sin(α π4)cos(α π4)2cos2(α π4)=sin(2α π2)1 cos(2α π2)=cos2α1-sin2α=b1-a,所以选(A).解法2 tan(α π4)=sin(α π4)cos(α π4)=2sin2(α π4)2sin(α π4)cos(α π4)=1-cos(2α π2)sin(2α π2)=1 sin2αcos2α=1 ab.所以选(B).解法3 tanα=sinαcosα=2sinαcosα2cos2α=sin2α1 cos2α=a1 b,所以tan(α π4)=tanα tanπ41-tantαanπ4=a1 b 11-a1 b=1 a b1-a b,所以选(C…  相似文献   

11.
文[1]中笔者研究三角形性质时,发现了一个由三角形中线“生成”正三角形的问题,在文末笔者指出三条高线中能否有这种生成问题.最近,我们得到了如下结论.图1定理如图1,△ABC中,H是△ABC的垂心,H A、H B、H C的延长线上分别有点Z、L、M.若AZBC=BLAC=CMAB=33,则△ZLM是等边三角形.证明∵AZ=33a,BL=33b,CM=33c.(以锐角三角形为例)∵AH=2R cos A,∴H Z=2R cos A 13a,同理HM=2R cos C 13c.∵∠AH C=180-°B.ZM2=(2R cos A a3)2 (2R cos C c32) 2(2R cos C c)(2R cos A a3)cos B=4R2(cos2A cos2C 2cos A cos B cos C) …  相似文献   

12.
如图1,△ABC是一任意三角形,△DEF图1是它的外角平分线三角形,记△ABC的三边长为a、b、c,半周长为p,面积为S0,外接圆半径为R,内切圆半径为r,旁切圆半径为ra、rb、rc,△DEF的面积为S.经过探讨,笔者现已得到:定理S=2pR.证明因(p-a)(p-b)(p-c)=r2p,ab bc ca=p2 4Rr r2,得p-1a p-1b  相似文献   

13.
张新全 《数学通报》2006,45(4):54-55
文[1]中,胡如松先生提出了如下猜想,现予以证明.设△DEF为△ABC内接三角形(如图).并设△ABC的三内角为A,B,C;三边BC=a,CA=b,AB=c;EF=a0,FD=b0,DE=c0.分别设△ABC,△DEF,△AEF,△BDF,△CDE的外接圆半径、内切圆半径、半周长和面积依次为R,R0,R1,R2,R3;r,r0,r1,r2,r3;P,P0,P1,P2,  相似文献   

14.
两个正则点之间的距离   总被引:2,自引:2,他引:0  
我们知道 ,不等边三角形有且只有两个正则点 .那么 ,这两个正则点之间的距离是多少呢 ?定理 若不等边△ ABC的三边长为 a,b,c,它的两个正则点为 Z,Z′,则ZZ′=3abcλλ′ ,其中λ= a2 b2 - 2 abcos(C 6 0°)等三式 ;λ′= a2 b2 - 2 abcos(C - 6 0°)等三式 .图 1证明 图 1所反映的是最大角 A小于 12 0°,最小角 C小于 6 0°时的情形 ,记∠ ZAB =θ,∠ Z′AB =θ′,则∵∠ AZB =6 0° C, ∠ AZ′B =6 0°- C,∴  csin(6 0° C) =ZBsinθ,∴  sinθ =ZBc .sin(6 0° C)=acλ.1csin(6 0° C)=aλsin(6 0° C) ,同理可得…  相似文献   

15.
在△ABC中,其外接圆半径为R,角A,B,C的对边分别是a,b,c,由正弦定理可知a=2RsinA,b=2RsinB,c=2RsinC,代入余弦定理a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=b2+a2-2abcosC可得到一组推论:sin2A=sin2B+sin2C-2sinBsinCcosA;sin2B=sin2A  相似文献   

16.
有不少不等式直接证明并不容易 ,可是当我们将它适当加强 ,证明起来反而容易多了 .比如 ,以下两题原证法都较繁 ,现用这种方法给以简证 .例 1 在△ ABC中 ,求证sin Bsin C 2 cos B2 cos C2 ≤ 2 r2 R,( 1 )cos Bcos C 2 sin B2 sin C2 ≤ 1 - r2 R. ( 2 )其中 ,R,r为△ ABC外接圆、内切圆半径 .(《数学通报》2 0 0 1年第 2期第 1 2 98数学问题 )证明 为证明不等式 ( 1 ) ,将 ( 1 )加强为sin Bsin C cos2 B2 cos2 C2 ≤ 2 r2 R ( 3)而不等式 ( 3) - 12 [cos( B C) - cos( B- C) 1 cos B2 1 cos C2 ≤ 2 …  相似文献   

17.
定理 设△ ABC与其伴内心△ A′B′C′的边长分别为 a,b,c与 a′,b′,c′;外接圆半径分别为 R与 R′;内切圆半径分别为 r与 r′;半周长分别为 s与 s′;面积分别为△与△′.则有 △′≤ 14△  ( 1 )    R′≥ 14R ( 2 )  s′≥ 12 s ( 3) r′≤ 12 r ( 4)等式成立当且仅当△ ABC是正三角形 .笔者在文 [1 ]中建立了不等式 ( 1 ) ( 2 ) ,今另辟蹊径建立了不等式 ( 3) ( 4) ,先介绍 :引理  (第二届友谊杯国际数学邀请赛试题 )设 a,b,c都是正数 ,则a2b c b2c a c2a b≥ a b c2 . ( 5)证明 由伴内心定义 ,AC′C′B=ab…  相似文献   

18.
边长为等差数列的三角形的一组性质   总被引:1,自引:0,他引:1  
张宇 《中学数学》2000,(4):35-35
98年高考试题 (理工 )第 2 0题为 :在△ ABC中 ,a、b、c分别是角 A、B、C的对边 ,设a c=2 b,A - C =π3,求 sin B的值 .此题的条件中出现有 a c=2 b,即三边成等差数列 .本文介绍三边成等差数列的三角形的一系列性质 .在△ ABC中 ,若 a c=2 b,则有(1 ) sin A - 2 sin B sin  相似文献   

19.
邵明志 《中学数学》2001,(11):44-45
1 欧拉不等式设△ ABC外接圆半径为 R,内切圆半径为 r,则有  R≥ 2 r ( 1 )下面寻找该不等式的几种等价形式 .记△为△ ABC的面积 ,s为半周长 ,则△ =rs=abc4R,∴  4R△ =abc,8△2s =8r△ ,从而 R≥ 2 r等价于 abc≥ 8△2s,由海伦公式 ,又可得欧拉不等式的另一等价形式abc≥ 8( s- a) ( s- b) ( s- c) ( 2 )式 ( 2 )又等价于abc≥ ( b c- a) ( c a- b) ( a b- c) ( 3)对式 ( 3)简证如下 :a2≥ a2 - ( b - c) 2=( a b - c) ( c a - b) ,b2 ≥ b2 - ( c- a) 2=( b c- a) ( a b - c) ,c2 ≥ c2 - ( a - b) 2=( c a - b) (…  相似文献   

20.
设△ABC三边为a、b、c,三角为α、β、r,则以Sinα、sinβ、sinr为边的三角形存在,且这个三角形的三角仍为α、β、r。证明:在△ABC中,由正弦定理知: a/sinα=b/sinβ=c/sinr=2R(R为△ABC外接圆半径) (1)由(1)得:Sinα=a/2R,sinβ=b/2R,sinr=c/2R。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号