首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
By virtue of the separation of variables technique, the axisymmetric plane strain electroelastic dynamic problem of hollow cylinder is transferred to an integral equation about a function with respect to time, which can be solved successfully by means of the interpolation method. Then the solution of the displacements, stresses, electric displacements and electric potentials are finally obtained. The present method is suitable for the hollow cylinder with arbitrary thickness subjected to arbitrary mechanical and electrical loads. Numerical results are also presented.  相似文献   

2.
The dynamic solution of a multilayered orthotropic piezoelectric infinite hollow cylinder in the state of axisymmetric plane strain is obtained. By the method of superposition, the solution is divided into two parts: one is quasi-static and the other is dynamic. The quasi-static part is derived by the state space method, and the dynamic part is obtained by the separation of variables method coupled with the initial parameter method as well as the orthogonal expansion technique. By using the obtained quasi-static and dynamic parts and the electric boundary conditions as well as the electric continuity conditions, a Volterra integral equation of the second kind with respect to a function of time is derived, which can be solved successfully by means of the interpolation method. The displacements, stresses and electric potentials are finally obtained. The present method is suitable for a multilayered orthotropic piezoelectric infinite hollow cylinder consisting of arbitrary layers and subjected to arbitrary axisymmetric dynamic loads. Numerical results are finally presented and discussed.  相似文献   

3.
The dynamic solution of a multilayered spherically isotropic piezoelectric hollow sphere subjected to radial dynamic loads is obtained. By the method of superposition, the solution is divided into two parts: one is quasi-static and the other is dynamic. The quasi-static part is derived by the state-space method, and the dynamic part is obtained by the method of separation of variables coupled with the initial parameter method as well as the orthogonal expansion technique. By using the quasi-static and dynamic parts, the electric boundary conditions as well as the electric continuity conditions, a Volterra integral equation of the second kind with respect to a function of time is derived, which can be solved successfully by means of the interpolation method. The displacements, stresses and electric potentials are finally obtained. The present method is suitable for a multilayered spherically isotropic piezoelectric hollow sphere consisting of arbitrary layers and subjected to arbitrary spherically symmetric dynamic loads. Finally, numerical results are presented and discussed.  相似文献   

4.
层合球面各向同性热释电空心球的瞬态响应   总被引:1,自引:0,他引:1  
运用叠加原理,将层合球面各向同性热释电空心球的球对称动力学问题的解分成准静态和动 态两部分,准静态部分首先运用状态空间法给出了显式表达式,然后运用分离变量法、初参 数法和特征函数展开技术,给出了动态部分的表示式,再结合内外表面上的电学边界条件和 界面上的电学连续条件,导出一个关于时间函数的第二类Volterra积分方程,运用插值法 可成功地给出此积分方程的高精度数值解,最终可求得原问题的位移、应力、电位移以及电 势的响应. 此方法适用任意层数且各层是任意厚度的层合热释电空心球作用随时间以任意形 式变化的球对称温度场. 文中还给出了数值结果.  相似文献   

5.
The paper presents an analytical method to solve thermo-electro-elastic transient response in piezoelectric hollow structures subjected to arbitrary thermal shock, sudden mechanical load and electric excitation. Volterra integral equation of the second kind caused by interaction between elastic deformation and electric field is solved by using an interpolation method. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement and electric potential in the piezoelectric hollow structures are obtained by means of Hankel transform, Laplace transform, and their inverse transforms. In Section 2, based on spherical coordinates, the governing equation of thermo-electro-elastic transient responses in a piezoelectric hollow sphere is found and the associated numerical results are carried out. In Section 3, based on cylindrical coordinates, the governing equation of thermo-electro-elastic transient responses in a non-homogeneous piezoelectric hollow cylinder is found and the corresponding numerical results are carried out. The results carried out may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity in piezoelectric structures.  相似文献   

6.
For the thermoelastic dynamic axisymmetric problem of a finite orthotropic hollow cylinder, one comes closer to reality to involve the effect of axial strain than to consider the plane strain case only. However, additional mathematical difficulties should be encountered and a different solution procedure should be developed. By the separation of variables, the thermoelastic axisymmetric dynamic problem of an orthotropic hollow cylinder taking account of the axial strain is transformed to a Volterra integral equation of the second kind for a function of time, which can be solved efficiently and quickly by the interpolation method. The solutions of displacements and stresses are obtained. It is noted that the present method is suitable for an orthotropic hollow cylinder with an arbitrary thickness subjected to arbitrary axisymmetric thermal loads. Numerical comparison is made to show the effect of the axial strain on the displacements and stresses. The project supported by the National Natural Science Foundation of China (10172075) and China Postdoctoral Science Foundation (20040350712)  相似文献   

7.
The article presents an analytical solution for magneto–thermo–electro–elastic problems of a piezoelectric hollow cylinder placed in an axial magnetic field subjected to arbitrary thermal shock, mechanical load and transient electric excitation. Using an interpolation method solves the Volterra integral equation of the second kind caused by interaction among magnetic, thermal, electric and mechanical fields, the electric displacement is determined. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement, electric potential and perturbation of the magnetic field vector in the piezoelectric hollow cylinder are obtained by means of Hankel transforms, Laplace transforms, and inverse Laplace transforms. From sample numerical calculations, it is seen that the present method is suitable for a piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation, and the result carried out may be used as a reference to solve other transient coupled problems of magneto–thermo–electro–elasticity.  相似文献   

8.
This paper presents analytical study for electromagnetothermoelastic transient behavior of a transversely isotropic hollow sphere, placed in a uniform magnetic field, subjected to arbitrary thermal shock. Exact solutions for the transient responses of stresses, perturbation of magnetic field vector, electric displacement and electric potential in the transversely isotropic piezoelectric hollow sphere are obtained by means of the Hankel transform, the Laplace transform and their inverse transforms. An interpolation method is used to solve the Volterra integral equation of the second kind caused by interactions among electric, magnetic, thermal and elastic fields. From the sample numerical calculations, it is seen that the present method is suitable for the transversely isotropic hollow sphere, placed in a uniform magnetic field, subjected to arbitrary thermal shock. Finally, the result can be used as a reference to solve other transient coupling problems of electromagnetothermoelasticity.  相似文献   

9.
The paper proposes and analyzes different approaches to constructing numerical schemes to solve the nonstationary vibration problem for a radially polarized piezoelectric hollow cylinder with different electric boundary conditions under mechanical loading. It is established that when the cylinder is subjected to internal pressure, the radial displacements are similar and the longitudinal displacements substantially different in cylinders with electroded and nonelectroded surfaces __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 67–75, December, 2006.  相似文献   

10.
This paper presents an analytical solution for the interaction of electric potentials,electric displacements,elastic deformations,and thermoelasticity,and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures(cylinder or sphere),subjected to mechanical load and electric potential.The material properties,thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution.In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material,reinforced by elastic isotropic fibers,this material is considered as structurally anisotropic material.The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity,and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin’s approximation method.Finally,numerical results are carried out and discussed.  相似文献   

11.
A theoretical method for analyzing the axisymmetric plane strain elastodynamic problem of a non-homogeneous orthotropic hollow cylinder is developed. Firstly, a new dependent variable is introduced to rewrite the governing equation, the boundary conditions and the initial conditions. Secondly, a special function is introduced to transform the inhomogeneous boundary conditions to homogeneous ones. By virtue of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which the solution can be obtained. The displacement solution is finally obtained, which can be degenerated in a rather straightforward way into the solution for a homogeneous orthotropic hollow cylinder and isotropic solid cylinder as well as that for a non-homogeneous isotropic hollow cylinder. Using the present method, integral transform can be avoided and it can be used for hollow cylinders with arbitrary thickness and subjected to arbitrary dynamic loads. Numerical results are presented for a non-homogeneous orthotropic hollow cylinder subjected to dynamic internal pressure. The project supported by the National Natural Science Foundation of China (10172075 and 10002016)  相似文献   

12.
Summary  The spherically symmetric dynamic thermoelastic problem for a special nonhomogeneous transversely isotropic elastic hollow sphere is formulated by introduction of a dependent variable and separation of variables technique. The derived solution can be degenerated into that for a homogeneous transversely isotropic hollow sphere, a nonhomogeneous isotropic hollow sphere or a solid sphere. The present method, allow to avoid integral transforms, is suited for a hollow sphere of arbitrary thickness subjected to arbitrary spherical symmetric thermal and mechanical loads, and is convenient in dealing with different boundary conditions of dynamic thermoelasticity . The numerical calculation involved is easy to be performed and its results are also presented. Received 30 October 2001; accepted for publication 21 February 2002 The work was supported by the National Natural Science Foundation of China (No. 10172075 and No. 10002016)  相似文献   

13.
By introducing a dependent variable and a special function satisfying the inhomogeneous mechanical boundary conditions, the governing equation for a new variable with homogeneous mechanical boundary conditions is derived. Then by means of the separation of variables technique and the electric and magnetic boundary conditions, the dynamic problem of a magneto-electro-elastic hollow sphere under spherically symmetric deformation is transformed to two Volterra integral equations of the second kind about two functions of time. Cubic Hermite polynomials are adopted to approximate the two undetermined functions at each time subinterval and the recursive formula is obtained to solve the integral equations successfully. The transient responses of displacements, stresses, electric and magnetic potentials are completely determined at the end. Numerical results are presented.  相似文献   

14.
An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson’s ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler’s equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.  相似文献   

15.
An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson’s ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler’s equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.  相似文献   

16.
In this study, an analytical method is developed to obtain mechanical and thermal stress and electrical potential functions, electrical and mechanical displacement in two dimensional steady (r,θ) stat a functionally graded piezo electric porous material hollow sphere (FGPPM). It is assumed that properties of poro, piezoelectric and FGM material is changed through thickness according to power law functions, Heat conduction equation is obtained for obtaining temperature distribution and Navier equations analytically using Legendre polynomials and Euler differential equations system for investigating displacements changes and stress and potential functions for different power indices law and is drawn on a graph. These results are confirmed with the obtained in formations in the paper.  相似文献   

17.
通过调节平行悬挂于梁上的两个弹簧-质量系统使得梁上任意一点的挠度和转角 同时为零,从而达到抑制振动的目的. 首先利用假设模态法得到结构的控制方程, 在此 基础上,同时考虑零挠度和零转角条件,得到了一种确定弹簧-质量系统参数的算法. 通过数值算例证明了通过该方法能够有效地抑制梁上任意点的振动.  相似文献   

18.
Dynamic anti-plane fracture problem of an exponentially graded linear magnetoelectroelastic plane with a finite impermeable crack subjected to time-harmonic SH-waves is solved. Directions of wave propagation and material inhomogeneity are chosen in an arbitrary way. The fundamental solution for the coupled system of partial differential equations with variable coefficients is derived in a closed form by the hybrid usage of both an appropriate algebraic transformation for the displacement vector and the Radon transform. The formulated boundary-value problem is solved by a nonhypersingular traction boundary integral equation method (BIEM). The collocation method and parabolic approximation for the unknown generalized crack opening displacements are used for the numerical solution of the posed problem. Quarter point elements placed next to the crack-tips ensure properly modeling the singular behavior of the field variables around the crack tip. Fracture parameters as stress intensity factor, electric field intensity factor and magnetic field intensity factor are computed. Intensive simulations reveal the sensitivity of the generalized intensity factors (GIF) at the crack-tips to the material inhomogeneity, characteristics of the incident wave, coupling effects, wave-material and wave-crack interaction phenomena.  相似文献   

19.
An axisymmetric electroelastic problem of hollow radially polarized piezoceramic cylinders made of functionally graded (FG) materials is analyzed. For the material properties of power-law profile, a closed-form solution is derived. For a general gradient variation, an analytic approach is suggested, which reduces the problem to a Fredholm integral equation. Solving the resulting equation, the response of the electroelastic field can be determined. No severe limitation is required for varying material properties in this method. Numerical results of a cylindrical FG piezoelectric tube with PZT-5H as the inner surface ceramic are evaluated, and the distribution of the radial and circumferential stresses as well as the electric potential for piezoelectric sensors and actuators are presented graphically under electric and mechanical stimuli, respectively. Our results indicate that the electroelastic response in an FG piezoceramic tube with material properties decreasing when the radius increases becomes more obvious than that with material properties increasing. Moreover, the gradient index strongly affects the stress distribution and electric response. The obtained results are helpful for the design of annular cylindrical FG piezoelectric sensors/actuators.  相似文献   

20.
Summary Stresses, displacements and electric field are calculated in a rotating thick walled hollow cylindrical shaft made out of piezoelectric quartz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号