首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为研究新型波形钢腹板(CSW)组合箱梁的畸变效应,以板梁框架法和位移法为基础,建立单箱多室新型CSW组合箱梁的畸变控制微分方程和边界条件,得到畸变正应力解析解,并采用有限元法检验推导结果的正确性。应用推导结果对比分析新型CSW组合箱梁与传统CSW组合箱梁的畸变性能,以及截面高度、箱室宽度和钢底板厚度对新型CSW组合箱梁畸变效应的影响。结果表明:解析解计算得到的畸变正应力与有限元模型计算的结果吻合较好,畸变角的变化规律与有限元模型计算结果一致;与传统CSW组合箱梁相比,新型CSW组合箱梁的畸变翘曲刚度减小了38.89%,畸变框架刚度减小了71.84%,抗畸变能力减弱;随着截面高度和箱室宽度增加,新型CSW组合箱梁跨中畸变角和跨中畸变双力矩均逐渐增大,且箱室宽度的影响更为明显;随着钢底板厚度增加,新型CSW组合箱梁跨中畸变角逐渐减小,跨中畸变双力矩逐渐增大。  相似文献   

2.
基于薄壁箱梁畸变理论,考虑畸变位移与框架位移之间的协调条件,建立斜腹板单箱单室箱梁横向内力计算的解析公式。在刚性支承框架分析基础上,通过引入横向弯矩修正系数,反映箱梁畸变变形对横向弯矩的影响。详细分析竖向偏心荷载作用下,斜腹板倾斜程度及梁高变化对横向弯矩的影响规律。研究结果表明:按文中公式求得的箱梁横向弯矩与有限元软件Ansys壳单元计算结果吻合良好,从而验证了本文公式的正确性;在通常的偏心荷载作用下,当斜腹板的俯角约为12°,箱室高宽比约为0.55时,顶板的横向弯矩峰值最小;随着俯角及高宽比的增大,离偏心荷载较近的顶板角点横向弯矩修正系数逐渐增大,而较远的角点横向弯矩修正系数急剧减小,当俯角及高宽比很大时修正系数均趋近于1。  相似文献   

3.
为分析变截面连续梁的剪力滞效应,推导了变截面连续梁剪力滞效应的比拟杆控制方程,以某三跨连续梁为例检验了本文算法的正确性,讨论了箱梁梁高变化对连续箱梁剪力滞系数的影响,通过分析箱梁顶板和腹板内剪力流沿跨长的分布规律,探讨了梁高变化对连续箱梁正负剪力滞的影响规律。研究发现:连续梁正弯矩区呈现正剪力滞现象,负弯矩区的剪力滞现象与悬臂梁类似;梁高沿跨径方向的变化减弱了连续箱梁负弯矩区内剪力滞效应,但增大了正弯矩区的正剪力滞效应;工程设计时可以增大连续梁在负弯矩区内梁高的变化梯度,并减小正弯矩区内梁高的变化梯度,以最大程度地减小箱梁剪力滞效应。  相似文献   

4.
为了研究波形钢腹板曲线结合梁的弯扭效应,基于波形钢腹板的特点,综合考虑曲率影响、截面剪力滞效应、波形腹板剪切效应、扭转和畸变效应,采用能量变分法推导了波形钢腹板简支曲线结合梁在弯扭作用下的控制微分方程,采用伽辽金法求解得到了其弯扭效应的解析解,并对曲线半径和圆心角进行了参数分析。随曲线半径的增大,波形钢腹板简支曲线结合梁的跨中挠度、扭转角、畸变角和剪力滞附加弯矩均增大,但扭弯应力比减小;随圆心角的增大,跨中挠度、扭转角和畸变角均增大,剪力滞附加弯矩基本不变,扭弯应力比则线性增加。说明曲线半径的减小和圆心角的增大,可使波形钢腹板简支曲线结合梁的扭转效应增强,弯曲特性减弱,圆心角和曲线半径是表征其弯扭效应的两个重要指标。  相似文献   

5.
为了分析时速250km/h铁路32m跨度双线标准箱梁的畸变效应,基于板壳有限元建立了畸变效应分析的数值模型。采用板壳有限元方法和传统解析方法,对比计算仅单线活载作用下的畸变应力分布规律。通过定义翘曲比例系数,研究高跨比、宽跨比和壁厚等设计参数对畸变应力的影响规律。研究结果表明:与传统解析解比较,板壳有限元法更适合于箱梁畸变效应的分析。单线活载偏心作用下,跨中截面箱梁顶板靠近翼缘板边缘部位的翘曲比例系数可达11.6%;腹板与底板相交处翘曲比例系数最大,可达13.9%。跨中和l/4截面的翘曲比例系数ξ分析表明,现有箱梁设计参数合理,跨中最大翘曲比例系数小于15%,而l/4截面基本为0。箱梁高跨比、宽高比、壁厚等设计参数对畸变效应均有一定影响,总体规律是畸变效应随高跨比、宽高比和壁厚的增大而减小。  相似文献   

6.
张元海  林丽霞  李乔 《铁道学报》2011,33(5):104-108
在选取薄壁箱梁剪力滞控制微分方程的齐次解作为单元位移函数建立形函数矩阵基础上,运用虚功原理推导竖向集中荷载作用下单元等效节点力公式,提出双室箱梁的合理剪滞翘曲位移函数。通过对变截面悬臂箱梁有机玻璃模型进行计算,验证提出的梁段单元对分析变截面箱梁的有效性。结合实际箱梁算例,分析预应力混凝土变截面连续箱梁的挠曲性能。研究结果表明:所提出的梁段单元用于变截面箱梁分析时,具有较高的计算精度;在竖向集中荷载作用下,箱梁剪滞力矩图是一条平滑曲线,任意截面处剪滞力矩均不大于弯矩;剪滞效应使连续箱梁的跨中挠度明显增大,工程实践中必须认真对待。  相似文献   

7.
基于比拟杆法,推导单箱三室箱梁的比拟杆面积计算公式和剪力滞效应计算的控制微分方程。针对算例,分别采用本文理论、有机玻璃模型试验和有限元法分析简支箱梁和连续箱梁在集中力和均布荷载作用下的剪力滞效应。研究结果表明:本文理论解与有机玻璃模型试验解和板壳有限元解吻合良好。对简支箱梁,中腹板部位的顶和底板正应力均大于边腹板处顶和底板正应力。对连续箱梁,跨中截面中腹板处的顶和底板正应力均大于边腹板处和底顶板正应力。但对满跨均布荷载下的支座截面,底板正应力在边腹板部位大于中腹板部位,应力相差最大约12.91%。在单箱三室箱梁设计中考虑各腹板部位顶和底板正应力的差异,并以此确定有效翼缘分析宽度是非常必要的。  相似文献   

8.
分析带悬臂板箱梁横截面上各项剪应力及其合成的扭矩,导出极惯性矩和翘曲系数的表达式并论证计算极惯性矩时考虑悬臂板的必要性。在约束扭转控制微分方程基础上,给出简支箱梁跨中作用集中扭矩荷载时各广义位移和内力的初参数解。结合数值算例,分别按考虑和不考虑悬臂板情况计算极惯性矩,将求得的全截面翘曲正应力与通用有限元软件ANSYS壳单元计算结果进行比较,分析不同极惯性矩计算结果对广义位移和内力的影响。结果表明:计算极惯性矩考虑悬臂板时求得的翘曲正应力比不考虑时更接近ANSYS壳单元的计算结果,证实考虑悬臂板更合理;计算极惯性矩时是否考虑悬臂板,对箱梁扭转角和广义翘曲位移的影响较小,但对双力矩和二次扭矩有明显影响,不考虑悬臂板时跨中截面的双力矩和二次扭矩分别减小22%和39%。  相似文献   

9.
选取二次抛物线作为剪力滞翘曲位移函数,用能量变分法导出双室箱梁剪力滞控制微分方程。通过分别建立单元两端支点处和梁轴处位移之间的变换关系,考虑弯曲、约束扭转及剪力滞变形之间的耦合关系,提出一种适用于斜交支承连续箱梁剪力滞效应分析的梁段单元。对一斜交支承3跨连续双室箱梁模型的计算值与ANSYS壳单元计算值和实测值均吻合良好,证明该单元是可靠的。详细分析斜交支承角度变化对斜交支承3跨连续箱梁剪力滞效应及内力分布的影响,结果表明:与常规支承箱梁相比,斜交支承箱梁的剪力滞效应更为显著;控制截面的弯矩和剪滞力矩均随着斜交支承角度增大而减小,但双力矩却随斜交支承角度增大而增大;荷载横向作用位置对双力矩的分布有显著影响;剪力滞和约束扭转引起的翘曲应力在总应力中占较大比例,设计中必须认真对待。  相似文献   

10.
以高速铁路预应力混凝土简支箱梁桥为背景,采用大型通用有限元软件Midas-FEA建立了单箱单室截面与单箱双室截面连续梁桥空间有限元模型,对两种桥梁典型截面横向受力与横向应力沿纵向传递规律进行了分析。研究结果表明:对于典型截面横向应力分析,不论截面位于梁端还是梁体跨中,单箱双室截面箱梁截面较单室截面应力平稳,与单箱单室相比,单箱双室截面顶板在箱室跨中(B-B)能有效减小顶、底板应力。对于截面横向应力沿纵向变化规律而言,截面中心线(A-A)位置,单箱单室与单箱双室截面应力变化规律与数值相差较大;箱室跨中(B-B)位置处截面应力沿纵向变化规律基本一致,且双室截面较单室截面较为平稳;单室截面边腹板剪应力大于双室截面边腹板剪应力,双室截面边、中腹板剪应力之和较单箱单室截面腹板剪应力之和大。  相似文献   

11.
在改进的箱梁畸变效应解析理论基础上,用能量变分法建立畸变控制微分方程,根据边界条件推导出两端设置横隔板的悬臂箱梁在竖向偏心均布荷载作用下的畸变效应计算式.通过有限元软件ANSYS对所推导公式的正确性进行验证.结合数值算例详细分析参数变化对悬臂箱梁畸变效应的影响.研究结果表明:高宽比对悬臂箱梁畸变翘曲正应力的影响程度大于...  相似文献   

12.
箱形梁剪滞效应分析中的广义力矩研究   总被引:2,自引:2,他引:2  
张元海  李乔 《铁道学报》2007,29(1):77-81
基于能量变分原理,定义箱形梁剪滞效应分析中与剪滞广义位移相应的广义力,并称之为剪滞力矩,给出其计算公式。从轴向力平衡的力学条件出发,选取剪滞翘曲位移模式,并考虑悬臂板宽度及上下翼板至形心轴距离的影响,使箱形梁剪滞翘曲应力得到更合理反映。根据选取的剪滞翘曲位移函数,导出了剪滞翘曲惯性矩、剪滞翘曲惯性积、剪滞翘曲面积等剪滞几何特性计算公式。最后,对集中荷载和均布荷载作用下,悬臂箱梁的剪滞力矩及附加弯矩的变化规律进行较全面研究,结果表明,剪滞力矩与弯矩具有基本相同的分布规律,但当集中荷载作用于跨内时,在集中荷载作用点至悬臂端梁段内仍有剪滞力矩产生;集中荷载作用下,具有较大跨宽比的悬臂箱梁的附加弯矩分布具有明显的局部性质。  相似文献   

13.
以能量变分原理为基础,设置3个不同的剪滞纵向位移差函数以准确反映薄壁箱梁不同宽度翼板的剪滞变化幅度,在综合考虑剪力滞后、剪切变形及转动惯量效应的基础上,提出一种能对工程中常用的梯形薄壁箱梁自振特性进行分析的方法。本文利用最小势能原理建立了梯形薄壁箱梁的控制微分方程和自然边界条件,据此推导几种常用边界条件的固有频率方程(简支、悬臂、连续、两端固支)。在算例中,本文将解析解与板壳有限元结果进行比较,证明本文方法的有效性,明确剪力滞后效应对几种不同边界条件梯形箱梁自振特性影响的规律,为箱梁动力特性的进一步研究奠定基础。本文所得公式对目前的剪滞分析理论有所进展,具有一定的理论意义和实用价值,因此更具一般性。  相似文献   

14.
目前四线铁路钢桁梁多采用三主桁型式,采用双主桁的四线铁路桥跨度多在200 m左右。当四线铁路钢桁梁采用双主桁时能适应最小线间距要求,减小主桁横向总宽度,并降低主桥和引桥的工程规模及邻近隧站工程量,因此研究双主桁大跨度钢桁斜拉桥在工程上具有重要意义。结合某高速铁路四线大跨钢桁斜拉桥主桁横断面布置及桁梁主要构造尺寸,从结构受力、技术经济指标、不同桁宽所引起的引桥规模等方面研究三片桁与两片桁的主要差别,合理推断出四线高速铁路钢桁梁最小桁宽。同时从主桁腹杆承受较大面外弯矩及用钢量等方面比较四线主桁腹杆采用三角桁与N形桁的区别。最终确定主桁梁采用桁宽24.3 m的双主桁、腹杆为三角形桁式的钢桁架。研究结果表明:四线双主桁钢桁斜拉桥应用到500 m左右大跨度桥中在技术和经济上是可行的。  相似文献   

15.
研究目的:为选择出适用于钢轨导波无损检测的优势模态,采用半解析有限元法并基于哈密顿原理建立钢轨导波传播的控制方程,求解0~100 k Hz频率范围内的钢轨导波频散特性曲线。通过建立有限元模型对钢轨低频范围内的振动模态进行分析,验证半解析有限元法的准确性。在此基础上,提出将有限元法与半解析有限元法相结合的方法,用以分类并追踪钢轨理想导波模态,并根据相应的振型对理想模态导波进行激励和验证。研究结论:(1)随着频率的增大,钢轨导波振动模态数目迅速增加,但频散效应呈减小趋势;(2)对于钢轨基本振动模态,其横截面变形由整体变形逐渐演化为局部变形,其中扭转振动模态适用于轨腰检测,横向弯曲振动模态及竖向弯曲振动模态适用于轨底缺陷的检测;(3)在理想导波模态最大变形位置处施加激励荷载可以成功地激励出理想的导波;(4)本研究结果可为导波传感器设计与优化以及检测试验提供理论参考。  相似文献   

16.
曲线箱形梁兼具弯梁桥与箱形梁两者的特点,由于曲率的影响,竖向荷载作用下曲线箱梁弯矩与扭矩互相耦合同时存在。根据国内外既有研究成果,对曲线箱形梁空间受力特点及影响因素进行了总结。以60m单跨单箱形截面曲线混凝土简支梁为例,利用有限元软件TDV建立空间板单元模型,分析自重作用下,不同曲线半径下主梁截面正应力及剪应力分布,根据弯曲变形与应变的关系,比较曲线梁桥与直线梁桥正应力横向分布规律,提出用应力增大系数来表征曲线内外侧弧长不同引起的应力变化。研究结果表明,除了受剪力滞后效应影响,曲线箱梁桥截面正应力分布还与内外侧弧长不等引起的应力增大系数有关。  相似文献   

17.
变高度连续曲线箱梁的剪力滞效应   总被引:4,自引:0,他引:4  
应用能量变分原理,推导弯曲、扭转、剪力滞耦合的曲线箱梁弹性控制微分方程及其边界条件,得到微分方程的闭合解。利用所得的弹性控制微分方程的齐次解作为位移模式,应用刚度法和功能原理推导单元刚度矩阵及荷载列阵,建立一种考虑弯曲、扭转、剪力滞的曲线箱梁有限段模型。编制计算程序,对变高度连续曲线箱梁进行计算,探讨在不同荷载下的宽跨比和梁高比两个参数对剪力滞的影响,得到变高度连续曲线箱梁剪力滞效应的一些规律。进行剪力滞模型试验研究,并对模型桥进行有限段法和有限元法的数值计算,计算值与试验结果吻合较好,验证本文方法的正确性。本文所得公式是对连续曲线箱梁剪力滞效应理论的补充,分析所得结果为连续曲线箱梁的工程设计提供参考。  相似文献   

18.
武汉到咸宁的城际铁路中采用了大量的小曲线半径连续梁桥,最小半径达320 m,为目前我国曲线半径最小的铁路连续梁桥。本文采用ASCB和BSAS建立平面模型以及采用Midas2006建立空间有限元模型,对跨径组合为(24.65+24.65)m预应力混凝土连续箱梁分别进行施工阶段及运营阶段分析,计算恒载、活载、预应力、收缩徐变、体系温度、局部温差、支座不均匀沉降等荷载,得出支反力及内力、应力、强度、变形等,并进行了分析比较。由于"弯-扭"耦合作用、剪力滞效应及畸变挠曲效应、预应力损失等,使得曲线梁腹板内侧和外侧受力不同、支座的内侧和外侧受力也不同,因此不能单一采用以直代曲或者平面代替空间的计算结果,尤其是当曲线半径较小的情况下,尽量采用多种计算手段相互校核。并且通过采用箱形截面设计、加横隔板、降低曲线上车辆通过速度等可降低曲线效应对梁的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号