首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of fabricating a BN matrix/fiber interphase of SiC/SiC composites via electrophoresis deposition (EPD) was investigated based on the simplicity and non-destructiveness of the process and the excellent interfacial modification effects of BN. The BN suspension and SiC fiber surface properties were both adjusted to generate suitable conditions for the EPD process of the BN interphase. Next, the deposition dynamics and mechanism were studied under different deposition voltages and time, and the relationship between the deposition morphology of the BN interphase and mechanical properties of the fabricated mini SiC/SiC composites were also discussed. After oxidation at high temperature (600–1000 ℃), the mechanical properties of the mini SiC/SiC composites were studied to verify the oxidation resistance effect of the EPD-deposited BN interphase, whose oxidation resistance mechanism was briefly analyzed as well.  相似文献   

2.
In order to improve the mechanical properties, vertically aligned carbon nanotubes (VACNTs) were in situ introduced on the pyrocarbon (PyC) interfaces of the multilayer preform via chemical vapor deposition (CVD) process under tailored parameters. Chemical vapor infiltration (CVI) process was then employed to densify the multilayer preform to acquire SiC/SiC composites. The results show that the growth of VACNTs on PyC interface is highly dependent to the deposition temperature, time and constituent of gas during CVD process. The preferred orientation and high graphitization of VACNTs were obtained when temperature is 800?℃ and C2H4/H2 ratio is 1:3. The bending strength and fracture toughness of SiC/SiC composites with PyC and PyC-VACNTs interfaces were compared. Compared to the SiC/SiC composite with PyC interface, the bending strength and fracture toughness increase 1.298 and 1.359 times, respectively after the introduction of PyC-VACNTs interface to the SiC/SiC composites. It is also demonstrated that the modification of PyC interface with VACNTs enhances the mechanical properties of SiC/SiC composites due to the occurrence of more fiber pull-outs, interfacial debonding, crack branching and deflection  相似文献   

3.
Silicon carbide fiber-reinforced SiC ceramic matrix composites (SiCf/SiC CMCs) based on a domestic KD-SA SiC fiber were exposed to a wet oxygen atmosphere for 135 h at 800, 1100, and 1300°C. The evolution of the microstructure and mechanical properties of SiCf/SiC CMCs have been systematically investigated following oxidation. For weight change, CMC-1300 showed the greatest gain (0.394%), followed by CMC-1100 (0.356%) and CMC-800 (0.149%). The volatilization of boron oxide (B2O3) combined with the slight oxidation of the SiC matrix at 800°C caused crack deflection and fiber pull-out. The complete dissipation of the interphase could be found when the oxidation temperature increases to 1100°C, generated a fracture surface with brittle fracture characteristics. At 1300°C, crystalline SiO2 hindered oxygen diffusion, with evidence of fiber pull-out. Based on thermodynamic calculations and microscopic observations, we propose a mechanism to explain the thermal degradation of SiCf/SiC CMCs. This work offers valuable guidance for the fabrication of SiCf/SiC CMCs that are suitable for high-temperature applications.  相似文献   

4.
In this study, the amorphous C, ZrB2, and BN single-layer coatings as well as C/BN, C/ZrB2, ZrB2/BN, and C/ZrB2/BN composite coatings were prepared on SiC fibers (SiCf) by an in situ synthesis and solution impregnation–pyrolysis method. Subsequently, SiCf/SiBCN composites were fabricated by hot-pressing sintering at 1900℃/60 MPa/30 min to explore the influence of different coatings on the microstructure and mechanical performance of resulting composites. After the preparation of single-layer-coated SiCf, the SiCf(BN) or SiCf(ZrB2) tended to be overlapped with each other, whereas the dispersion of amorphous C–coated SiCf was satisfying. Besides, some uneven areas and attached particles have appeared on fiber surfaces of the SiCf(BN) or SiCf(ZrB2), whereas smooth and dense surfaces of amorphous C–coated SiCf were observed. Because the uniformity of ZrB2 coatings can be partially damaged by the subsequent coating process of BN, the composite coatings of ZrB2/BN and C/ZrB2/BN were thereby not suitable for strengthening SiBCN matrix. The SiCf/SiBCN composites with C/ZrB2 coatings have desirable comprehensive mechanical properties. Nevertheless, the conventional toughening mechanisms such as fiber pull-out and bridging, and crack deflection are not available for these composites because the serious crystallization of SiCf leading to great strength loss, resulting in catastrophic brittle fracture.  相似文献   

5.
As-grown and BN-coated boron nitride nanotubes (BNNTs) were incorporated into SiCf/SiC composites to produce nanotube-based hierarchical composites. In-depth studies on damage evolution reveal that early damage development are delayed owing to the restriction effects on crack propagations from as-grown and BN-coated BNNTs. Moreover, this delay effect is more pronounced from BN-coated BNNTs because BN-coated BNNTs/matrix interfacial bonding strength is low. Final failure of composites with as-grown BNNTs still comes much earlier compared with virgin composite due to strong fibers/matrix bonding enhanced by as-grown BNNTs. This premature final failure is remedied in large part in composites with BN-coated BNNTs because fibers/matrix bonding enhanced by as-grown BNNTs is weaken after the deposition of an interphase on nanotube surface. Additionally, the type, the number and the released energy level of damage mechanisms during the whole damage evolution after the incorporation of as-grown and BN-coated BNNTs were also discussed elaborately compared with virgin composite.  相似文献   

6.
Alternating pyrolytic carbon/boron nitride (PyC/BN)n multilayer coatings were applied to the KD–II silicon carbide (SiC) fibres by chemical vapour deposition technique to fabricate continuous SiC fibre-reinforced SiC matrix (SiCf/SiC) composites with improved flexural strength and fracture toughness. Three-dimensional SiCf/SiC composites with different interfaces were fabricated by polymer infiltration and pyrolysis process. The microstructure of the coating was characterised by scanning electron microscopy, X–photoelectron spectroscopy and transmission electron microscopy. The interfacial shear strength was determined by the single-fibre push-out test. Single-edge notched beam (SENB) test and three-point bending test were used to evaluate the influence of multilayer interfaces on the mechanical properties of SiCf/SiC composites. The results indicated that the (PyC/BN)n multilayer interface led to optimum flexural strength and fracture toughness of 566.0?MPa and 21.5?MPa?m1/2, respectively, thus the fracture toughness of the composites was significantly improved.  相似文献   

7.
In this study, we used a novel method of laser machining combined with dynamic chemical liquid etching (LMDCE) to drill holes in 2.5D SiCf/SiC ceramic matrix composites (CMC-SiC). A chemical solution that could quickly remove the recast layer without damaging the substrate was selected. Severe recast layer and microcrack defects were observed when laser machining was performed in the air. The surface of the material was highly carbonized due to the thermal effect of the laser. The effect of different defocus amounts and scanning speeds on the hole taper was studied. A lower scanning speed can ensure that a smaller taper is obtained by the microhole. The bore diameter of the holes processed with a defocusing amount of 0 or −1 mm is more uniform. The results show that with the assistance of a dynamic chemical solution, the fibers break neatly into needle-like shapes, the thermal effect of the laser on the ceramic substrate is significantly weakened, the microhole shows good roundness, and there are no recast layers and oxides on the sample surface. In addition, microcracks are significantly reduced, and high-quality microholes without a heat-affected zone (HAZ) are machined. The method provides a new idea on how to eliminate machining defects and achieve higher-quality micromachining for ceramic matrix composites.  相似文献   

8.
Electrospun unidirectional SiC fibers reinforced SiCf/SiC composites (e-SiCf/SiC) were prepared with ∼10% volume fraction by polymer infiltration and pyrolysis (PIP) process. Pyrolysis temperature was varied to investigate the changes in microstructures, mechanical, thermal, and dielectric properties of e-SiCf/SiC composites. The composites prepared at 1100 °C exhibit the highest flexural strength of 286.0 ± 33.9 MPa, then reduced at 1300 °C, mainly due to the degradation of electrospun SiC fibers, increased porosity, and reaction-controlled interfacial bonding. The thermal conductivity of e-SiCf/SiC prepared at 1300 °C reached 2.663 W/(m∙K). The dielectric properties of e-SiCf/SiC composites were also investigated and the complex permittivities increase with raising pyrolysis temperature. The e-SiCf/SiC composites prepared at 1300 °C exhibited EMI shielding effectiveness exceeding 24 dB over the whole X band. The electrospun SiC fibers reinforced SiCf/SiC composites can serve as a potential material for structural components and EMI shielding applications in the future.  相似文献   

9.
Titanium silicon carbide (Ti3SiC2) film was synthesized by molten salt synthesis route of titanium and silicon powder based on polymer-derived SiC fibre substrate. The pre-deposited pyrolytic carbon (PyC) coating on the fibre was utilized as the template and a reactant for Ti3SiC2 film. The morphology, microstructure and composition of the film product were characterized. Two Ti3SiC2 layers form the whole film, where the Ti3SiC2 grains have different features. The synthesis mechanism has been discussed from the thickness of PyC and the batching ratio of mixed powder respectively. Finally, the obtained Ti3SiC2 film was utilized as interphase to prepare the SiC fibre reinforced SiC matrix composites (SiCf/Ti3SiC2/SiC composites). The flexural strength (σF) and fracture toughness (KIC) of the SiCf/Ti3SiC2/SiC composite is 460 ± 20 MPa and 16.8 ± 2.4 MPa?m1/2 respectively.  相似文献   

10.
The protection effects of an environmental barrier coating (EBC) consisting of silicon bond coat and mixed ytterbium monosilicate and ytterbium disilicate composite topcoat are directly evaluated by measuring the strength retention rate of SiCf/SiC composites completely wrapped up by the previous EBCs after soaking in a mixed oxygen and water vapor environment at 1300°C for up to 200 h. The results show that the mixed topcoat exhibits not only extremely excellent phase stability but also fantastic protection effects toward composites. After 200 h of corrosion, the fully protected composites are unveiled to present not only dramatically reduced weight gain ratios, less than .6%, compared to ∼10% for those unprotected ones, but also extremely higher strength retention rates, more than 90%, compared to only 10%–15% for those unprotected ones. Further, the fully protected composites show a quasi-ductile load versus displacement curve, suggesting the retention of the oxidation-prone pyrolytic carbon interphase of current composites.  相似文献   

11.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   

12.
《Ceramics International》2017,43(5):4166-4174
Unidirectional SiCf/SiC minicomposites with SiC matrix derived by polymer-impregnation pyrolysis (PIP), reinforced with SiC fibers coated with zirconium or hafnium germanate were fabricated. Microdebonding indentation tests for SiCf/SiC composites with one- and multilayered germanate interphase were performed. Interfacial shear stress depending on the number of germanate interfacial layers and morphology was determined. The microstructure of the minicomposites and indented fracture surfaces were studied by scanning electron microscopy (SEM). It was stated that an increase in the number of interfacial coatings leads to a decrease in the interfacial frictional stress in SiCf/SiC minicomposites with germanate interphases. The key factor of interphase weakening is the formation of a weak interlayer bonding within the interphase but not germanate layered crystal structure itself. Thus, bonding at the fiber/matrix boundary could be regulated by the number of layers of ZrGeO4 or HfGeO4 in the interphase zone.  相似文献   

13.
核用SiC_f/SiC复合材料是国际上材料研究的一个热点,本文简要介绍了SiC_f/SiC复合材料的制备工艺,重点综述了SiC_f/SiC复合材料的抗辐照性能和耐腐蚀性能等方面的研究成果,详细介绍了SiC_f/SiC复合材料燃料包壳管的研究进展,并对核用SiC_f/SiC复合材料研究中需要关注的重点问题提出了几点思考。  相似文献   

14.
连续SiC纤维增韧SiC陶瓷基复合材料(SiCf/SiC CMCs)具有低密度、优异的高温力学性能和抗氧化性能,在航空发动机热端部件上具有广阔的应用前景,具备提高发动机推重比和使用温度、减轻无效重量、简化系统结构等显著优势.延长SiCf/SiC复合材料在航空发动机高温氧化环境下的服役寿命是当前需要解决的难题.本文从纤维、界面相、基体、表面涂层四个方面综述了SiCf/SiC复合材料高温抗氧化研究进展.采用多元多层自愈合界面相、对基体进行改性以及采用表面自愈合整体涂层都可以有效提高SiCf/SiC复合材料在高温氧化环境中的使用稳定性和寿命.  相似文献   

15.
Dense polycrystalline cBN (PcBN)–SiCw composites were fabricated by a two-step method: First, SiO2 was coated on the surface of cubic boron nitride (cBN) particles by the sol-gel method. Then, silicon carbide whisker (SiCw)- coated cBN powder was prepared by carbon thermal reaction between SiO2 and carbon powders at 1500°C for 2 hour. Then, cBN–SiCw complex powders were sintered by high-pressure and high-temperature sintering technology using Al, B, and C as sintering additives. The phase compositions and microstructures of cBN–SiCw composites were investigated by X-ray diffraction and scanning electron microscopy, respectively. It was found that the SiCw and Al3BC3 had been fabricated by in situ reaction, which cannot only promote densification but also improve mechanical properties. The relative density of PcBN composites increased from 96.3% to 99.4% with increasing SiCw contents from 5 to 20 wt%. Meanwhile, the Vickers hardness, fracture toughness and flexural strength of as-obtained composites exhibited a similar trend as that of relative density. The composite contained 20 wt% of SiCw exhibited the highest Vickers hardness and fracture toughness of 42.7 ± 1.9 GPa and 6.52 ± 0.21 MPa•m1/2, respectively. At the same time, the flexural strength reached 406 ± 21 MPa.  相似文献   

16.
《Ceramics International》2022,48(8):10770-10778
Pitch-based carbon fibers were assembled in horizontal and thickness directions of SiC/SiC composites to form three-dimensional heat conduction networks. The effects of heat conduction networks on microstructures, mechanics, and thermal conductivities were investigated. The results revealed the benefit of introducing heat conduction networks in the densification of composites. The maximum bending strength and interlaminar shear strength of the modified composites reached 568.67 MPa and 68.48 MPa, respectively. These values were equivalent to 18.6% and 69.4% increase compared to those of composites without channels. However, channels in thickness direction destroyed the continuity of fibers and matrix, creating numerous defects. As the volume fraction of heat conduction channels rose, the pinning strengthening effect of channels and influence of defects competed with each other to result in first enhanced mechanical properties followed by a decline. The in-plane thermal conductivity was found anisotropic with a maximum value reaching 86.20 W/(m·K) after introducing pitch-based carbon unidirectional tapes. The thermal conductivity in thickness direction increased with volume fraction of pitch-based carbon fibers and reached 19.13 W/(m·K) at 3.87 vol% pitch-based carbon fibers in the thickness direction. This value was 90.75% higher than that of composites without channels.  相似文献   

17.
《Ceramics International》2021,47(19):26971-26977
The SiCf/SiC composites have been manufactured by a hybrid route combining chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) techniques. A relatively low deposition rate of CVI SiC matrix is favored ascribing to that its rapid deposition tends to cause a ‘surface sealing’ effect, which generates plenty of closed pores and severely damages the microstructural homogeneity of final composites. For a given fiber preform, there exists an optimized value of CVI SiC matrix to be introduced, at which the flexural strength of resultant composites reaches a peak value, which is almost twice of that for composites manufactured from the single PIP or CVI route. Further, this optimized CVI SiC amount is unveiled to be determined by a critical thickness t0, which relates to the average fiber distance in fiber preforms. While the deposited SiC thickness on fibers exceeds t0, closed pores will be generated, hence damaging the microstructural homogeneity of final composites. By applying an optimized CVI SiC deposition rate and amount, the prepared SiCf/SiC composites exhibit increased densities, reduced porosity, superior mechanical properties, increased microstructural homogeneity and thus reduced mechanical property deviations, suggesting a hybrid CVI and PIP route is a promising technique to manufacture SiCf/SiC composites for industrial applications.  相似文献   

18.
The SiC fibers were coated with Ti3SiC2 interphase by dip-coating. The Ti3SiC2 coated fibers were heat-treated from 900 °C to 1100 °C in vacuum and argon atmospheres to comparatively analyze the effect of temperature and atmosphere on the microstructural evolution and mechanical strength of the fibers. The results show that the surface morphology of Ti3SiC2 coating is rough in vacuum and Ti3SiC2 is decomposed at 1100 °C. However, in argon atmosphere, the surface morphology is smooth and Ti3SiC2 is oxidized at 1000 °C and 1100 °C. At 1100 °C, Ti3SiC2 oxidized to form a thin layer of amorphous SiO2 embedded with TiO2 grains. Meanwhile, defects and pores appeared in the interphase scale. As a result, the fiber strength treated in the argon was lower than that treated in vacuum. The porous Ti3SiC2 interphase fabricated under vacuum was then employed to prepare the SiCf/SiC mini composite by chemical vapor infiltration (CVI) combined with precursor infiltration pyrolysis (PIP), and can effectively improve the toughness of SiCf/SiC mini composite. The propagating cracks can be deflected within the porous interphase layer, which promotes fiber pull-outs under the tensile strength.  相似文献   

19.
Based on the turbine high-temperature combustion gas simulation test platform, the long-term combustion gas environment exposure test of the 2D plain woven SiCf/BN/SiC composites under two combustion conditions was carried out. Uniaxial tensile test, fracture morphology characterization and non-destructive testing analysis revealed the degradation and microstructure evolution of composites after exposure to combustion gas environment. The results show that the degradation of 2D-SiCf/SiC composites after exposure to combustion gas environment is manifested as a decrease in static toughness, and the interphase transition is the mesoscopic cause of the decrease in static toughness of the composite.  相似文献   

20.
For the joining of SiCf/SiC and TZM alloy, an AuPdTiCrCu filler metal with dual active element of Ti and Cr was synthesized. The brazing process was carried out under the condition of 1200°C for 10 min. It was shown that fine Cr-based solid solutions were dispersed in the filler metal. When brazing, the element Cr and Ti moved toward the base metal and reacted with them to form into Mo-Cr-Si and Mo-Cr-Ti-Si compounds. These two active elements could promote the metallurgical reaction of the joint. Meanwhile, it was found that some Pd-Si compounds, fragments of (Au, Cu)ss and soft Au-Ti phases formed in the middle regions of the joint. (Au, Cu)ss and Au-Ti phases distributed around the Pd-Si compounds. In addition, the joining mechanism was discussed and the mechanical properties of the joints were tested. The results showed that the average four point flexural strength of the joints reached 88.5 MPa at room temperature and 46.8 MPa at 500°C. The fracture characters of the joints were discussed in the last.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号