首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Debutant analysis of the parameters impeding the efficiency of the CdS/SnS‐based photovoltaic device is the chief novelty of the present report. We have developed thin‐film heterojunction solar cells with the stacking sequence: glass/Al‐doped ZnO/CdS/SnS/In. The two crucial issues, band offsets and cell studies, are discussed in detail. The band offsets at the CdS/SnS interface have been systematically evaluated by semidirect X‐ray photoelectron spectroscopy. The calculated valance band offset (ΔEv) and conduction band offsets (ΔEc) are found to be 1.46 and ?0.36 eV, respectively. The negative value of conduction band offset indicates that the junction formed is of type‐II (staggered‐type heterojunction). Electrical studies revealed power conversion efficiency of 0.32% with VOC, JSC, and fill factor as 170.61 mV, 7.26 mA/cm2, and 0.26, respectively. The impact of the offset values on the cell studies is clearly elucidated. The reasons for the low efficiency are spotlighted. Collectively, this article gives the overview of the systematic approach undertaken to get obvious picture about the barriers that limit the conversion efficiency of the CdS/SnS‐based solar cell and the measurements required for enhancing the efficiency of the SnS‐based solar device.  相似文献   

2.
In the present paper we report, effect of conjugated polymer (polyaniline) impinging in nanostructured CdS/CuInSe2 heterojunction thin film solar cell. The heterojunction architecture for the solar cell is achieved by sandwiching the conjugated conducting polymer in n and p type of wide band gap semiconducting material by multilayer chemical deposition methods onto the ITO coated glass substrate at room temperature. The obtained multilayer thin film heterojunction of ITO/CdS/Polymer/CuInSe2/Ag has been characterized for structural, compositional, optical and solar cell characteristics by illuminating it to 100 mW/cm2 intensity light source. The X-ray diffraction pattern (XRD) confirms formation of CdS/CuInSe2 phase while on polymer impinging the crystallite size observed to be increased from 13 to 19 nm. The compositional analysis by energy dispersive X-ray spectra (EDAX) supports presence of expected elements in the heterojunction. The energy band gap calculated from absorbance spectra shows significant shift in its value from polymer and CdS/CuInSe2 band gap. IV analysis shows increase in conversion efficiency from 0.26 in CdS/CuInSe2 to 0.55% in CdS/Polymer/CuInSe2 heterojunction upon illumination.  相似文献   

3.
In this paper we describe the fabrication and characteristics of highly efficient and stable CdTe/CdS thin film solar cells. Our cells are prepared in three subsequent phases. Firstly, we deposit via sputtering, without solution of continuity a layer of CdS on top of the front contact made up of a double layer of ITO/SnO2 deposited on a soda lime glass substrate. The second phase consists in the treatment of the CdS layer, which is the key factor for the fabrication of a good heterojunction, with CdCl2 and in the subsequent deposition of the CdTe layer via close space sublimation technique. Finally, the back contact is fabricated via sputtering making use of the Sb2Te3 compound which guarantees the cell stability. Under global AM1.5 conditions the open-circuit voltage, short-circuit current and fill factor of our best cell, fabricated without antireflecting coating and normalized to the area of 1 cm2, were Voc=858 mV, Jsc=23 mA/cm2 and ff=74%, respectively, corresponding to a total area conversion efficiency of η=14.6%.  相似文献   

4.
CdS/SnS and Cd1−xZnxS/SnS solar cells were fabricated. SnS films were deposited by the pulsed electrochemical deposition method using an aqueous solution containing SnSO4 and Na2S2O3. CdS and Cd1−xZnxS window layers were deposited by using the photochemical deposition method using an aqueous solution containing CdSO4, ZnSO4 and Na2S2O3. Both the techniques were simple, economical and advantageous for fabricating cheap solar cells. The fabricated cells showed rectification characteristics. The photovoltaic properties were measured under AM 1.5 illumination. The cells with the Cd1−xZnxS window layer show larger photocurrent than those with the CdS window layer.  相似文献   

5.
Planar hybrid heterojunctions were built with poly 3-octylthiophene (P3OT) and chemical bath-deposited cadmium sulfide (CdS) thin films on a conductive glass substrate. The organic material, P3OT, acts as a light absorber and the inorganic one, CdS, as the electron acceptor. Two types of CdS films had been used: one is as-deposited and the other doped with HgCl2. Heterojunctions were formed by casting a chemically synthesized P3OT solution onto CdS films. The P3OT film thickness was also varied for heterojunction studies. Current vs. potential (IV) characterizations under dark and illumination conditions were performed for the P3OT/CdS heterojunctions under 88 mW/cm2 irradiance level, which show photovoltaic effect with different open circuit voltage (VOC) levels, being as high as 1 V for some devices. A parametric analysis of IV curves details the effect of CdS resistivity and P3OT film thickness on series and shunt resistance of the heterojunctions.  相似文献   

6.
The effective diffusion coefficients of Cu for thermal and photodiffusion in the CdTe films have been estimated from resistivity versus duration of thermal or photoannealing curves. In the temperature range 60–200°C the effective coefficient of thermal diffusion (Dt) and photodiffusion (Dph) are described as Dt=7.3×10−7exp(−0.33/kT) and Dph=4.7×10−8exp(−0.20/kT).It is found that the diffusion doping of CdTe thin films by Cu at 400°C results in a sharp decrease of resistivity up to 7 orders of magnitude of p-type material, depending on thickness of Cu film. The comparative study of performance of CdTe(Cu)/CdS and CdTe/CdS cells has been studied. It is shown that the diffusion doping of CdTe film by Cu increases efficiency of CdTe(Cu)/CdS cells from 0.9% to 6.8%. The degradation of photovoltaic parameters of CdTe(Cu)/CdS cell, during testing under forward and reverse bias at room temperature, proceeds at a larger rate than those of CdTe/CdS cell without Cu. The degradation of performance of CdTe(Cu)/CdS cells is tentatively assigned to electrodiffusion of Cu in CdTe, resulting in redistribution of concentration of Cu-related centers in CdTe film and heterojunction region.  相似文献   

7.
We report the effect of CdCl2 vapor treatment on the photovoltaic parameters of CdS/CdTe solar cells. Vapor treatment allows combining CdCl2 exposure time and annealing in one step. In this alternative treatment, the CdS/CdTe substrates were treated with CdCl2 vapor in a close spaced sublimation (CSS) configuration. The substrate temperature and CdCl2 powder source temperature were 400 °C. The treatment was done by varying the treatment time (t) from 15 to 90 min. Such solar cells are examined by measuring their current density versus voltage (J-V) characteristics. The open-circuit voltage (Voc), short circuit current density (Jsc) and fill factor (FF) of our best cell, fabricated and normalized to the area of 1 cm2, were Voc = 663 mV, Jsc = 18.5 mA/cm2 and FF = 40%, respectively, corresponding to a total area conversion efficiency of η = 5%. In cells of minor area (0.1 cm2) efficiencies of 8% have been obtained.  相似文献   

8.
A densely packed TiO2 thin film onto an indium doped–tin oxide (ITO) substrate was synthesized at room temperature by chemical deposition and a CdS thin film was deposited onto the pre-deposited TiO2 film by a doctor blade route (powder of CdS was obtained from chemical deposition). TiO2/CdS film was annealed at 300 °C for 1 h in air for crystallinity improvement. The first grown TiO2 film was nanocrystalline, whereas the CdS film was polycrystalline as evidenced by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Scanning electron microscopy (SEM) images show formation of mono-dispersed CdS spherical grains onto compact, densely packed spherical nanocrystalline grains of TiO2. The TiO2/CdS bilayer film was used in a photo-electrochemical cell as a working electrode, and a platinum electrode as a counter electrode (0.1 M lithium iodide electrolyte) under 80 mW/cm2 light illumination intensity.  相似文献   

9.
The aim of this work is to attract the attention of the scientific workers in the field of PV conversion of solar energy to SnS polycrystalline thin film as a candidate for construction of cheap solar cells, since it posseses similar photoelectric properties as polycrystalline silicon, but it can be produced on any kind of substrate, by simple, economic and environmentally approved technique. By the use of the method of chemical deposition from two separate solutions, complete preparation of three types of cells was done. All of them use SnS as base absorbing layer, with a difference in the window layer electrode. The first one has CdO, the second one has Cd2SnO4 thin film window electrode, both prepared by the chemical deposition method. The third cell was purely Schottky barrier cell in which the window electrode was SnO2:F, prepared by spray pyrolysis. The IV, CV and spectral characteristics were registered and the conclusion was drawn that the best performances has shown the cells with Cd2SnO4 film as a window electrode.  相似文献   

10.
When a CuInS2/CdS solar cell was fabricated by depositing CdS thin film with dopant In of 1.0 at% on ternary compound CuInS2 thin film with the lowest resistivity of 5.59 × 10−2 Ωcm, its best result was as follows: Voc = 461 mV, Isc = 26.9 mA, FF = 0.685, η = 5.66% under the illumination of 100 mW/cm2. And its series resistance and lattice mismatch was 5.1 Ω and 3.2%, respectively.Besides, a 4 layer structure solar cell of -CuInS2/high -CuInS2/high -CdS/low - CdS has been fabricated. When thickness of high - CuInS2 was 0.2 μm, its best result was as follows: Voc = 580 mV, Isc = 30.6 mA, FF = 0.697, η = 8.25%. An its series resistance and lattice mismatch were 4.3 Ω and 2.8%, respectively.  相似文献   

11.
SnS is a promising material for heterojunction solar cells, but the energy band alignment is not known for SnS-based heterojunctions. In this study, the energy band offset at the CdS/SnS heterojunction is calculated using the first principle, density-functional, pseudopotential method. A procedure analogous to that used in the core-level photoemission spectroscopy is adopted to calculate the band offset. The 4d core-level difference between Cd and Sn was estimated from the energy calculation of a superstructure consisting of zincblende CdS and rock-salt or zincblende SnS. The calculated valence-band offset is 0.1 eV when the rock-salt SnS is assumed and 0.84 eV when the zincblende SnS is assumed.  相似文献   

12.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

13.
Constructing 2D/2D heterojunction photocatalysts has attracted great attentions due to their inherent advantages such as larger interfacial contact areas, short transfer distance of charges and abundant reaction active sites. Herein, 2D/2D CoP/CdS heterojunctions were successfully fabricated and employed in photocatalytic H2 evolution using lactic acid as sacrificial reagents. The multiple characteristic techniques were adopted to investigate the crystalline phases, morphologies, optical properties and textual structures of heterojunctions. It was found that integrating 2D CoP nanosheets as cocatalysts with 2D CdS nanosheets by Co–S chemical bonds would significantly boost the photocatalytic H2 evolution performances, and the 7 wt% 2D/2D CoP/CdS heterojunction possessed the maximal H2 evolution rate of 92.54 mmol g?1 h?1, approximately 31 times higher than that of bare 2D CdS nanosheets. Photoelectrochemical, steady photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements indicated that there existed an effective charge separation and migration over 2D/2D CoP/CdS heterojunction, which then markedly lengthened the photoinduced electrons average lifetimes, retarded the recombination of charge carriers, and caused the dramatically boosted photocatalytic H2 evolution activity. Moreover, the density functional theory (DFT) calculation further corroborated that the efficient charge transfer occurred at the interfaces of CoP/CdS heterojunction. This present research puts forward a promising strategy to engineer the 2D/2D heterojunction photocatalysts endowed with an appealing photocatalytic H2 evolution performance.  相似文献   

14.
Thin films of tin sulfide find wide applications in optoelectronic devices and window materials for heterojunction solar cells. Thin films of p-SnS were brush plated onto tin oxide coated glass substrates from aqueous solution containing SnCl2 and Na2S2O3. Deposits have been characterized with XRD and SEM for structural analysis. Hot probe method showed invariably p-type nature for all the brush plated SnS films. The variation of space charge capacitance, Csc, with applied potential, V, was recorded for the PEC cell with p-SnS/Fe3+, Fe2+/Pt system. The spectral response of the PEC cell formed with SnS photoelectrode was studied and reported.  相似文献   

15.
Thin films of CdTe and CdTe/CdS and SnO2 used for heterojunction solar cells were deposited on glass substrates. The effects resulting from the processing with thermal heat and CdCl2 treatments are investigated. The optical properties are determined by photoluminescence (PL) and transmission spectra. The compositional changes within the CdTe film structures are studied by 2 MeV 4He+ beam using the Rutherford backscattering (RBS) technique. The optical and the RBS data are then correlated to the evolution of high-efficiency solar cells.  相似文献   

16.
Double heterostructures were prepared by depositing CdTe films on stainless steel (ss) substrates by the close spaced sublimation (CSS) method. The CdTe films were treated with a saturated solution of CdCl2 in methanol, dried in air and annealed at 400 °C. CdS layer of 0.2 μm was deposited on the CdTe film by the chemical bath method. The CdS/CdTe system was treated with saturated solution of CdCl2 in methanol and annealed for 30 min in air at different temperatures from 300 to 400 °C. The samples were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). The main effect of the temperature is to change the surface morphology of the CdS film from polycrystalline to an amorphous texture. By AES depth profiling the diffusion processes of the constituent element of the film was studied.  相似文献   

17.
Hydrogen generation efficiency and stability of the photoelectrocatalytic (PEC) water splitting relate closely to the crystallinity and the interface structure of the photoanodes. Here we demonstrated a feasible strategy for improving the cystallinity and interface quality of the ZnO/CdS nanoheterojunction arrays (NHAs) via CdCl2-assisting post-treatment. CdCl2 treatment was found to promote the recrystallization and densification of the CdS shell layer, the formation of the ZnxCd1-xS intermediate layer between ZnO and CdS, and the creation of an intermediate band (IB) in the forbidden band of CdS due to the high-density ClS states. Meanwhile, the annealing temperature was also lowered from 550 °C to 430 °C with the assistance of CdCl2 treatment. These improvements facilitate the seperation and transport of the photogenerated carriers and extends the light absorption range, resulting in extremely enhanced photocatalytic current and stability. Consequently, the photocatalytic currency reaches to 22 mA cm?2 under the 100 mW cm?2 illumination with the xenon lamp (λ > 420 nm), which is nearly two times larger than that annealed solely at 550 °C but without CdCl2 treatment. The photocatalytic current remains 92% of the initial value after 20-h photocatalytic test.  相似文献   

18.
CdTe/CdS heterojunction thin film solar cells of 11.7% efficiency have been made by close-spaced sublimation of CdTe. Some results regarding the influence of the CdCI2 treatment and contacting are given stressing the requirement of more in-depth analysis of the CdTe cells made by different processes in order to understand the common and basic mechanisms better.  相似文献   

19.
In this work, we fabricate a 1D/2D heterojunction photocatalyst composed of n-type CdS nanorods and p-type CoSx nanoflake. This photocatalyst achieves a hydrogen evolution rate of 9.47 mmol g?1 h?1, which is 13.7 times higher than that of pure CdS nanorods. Scanning Kelvin Probe, Mott-Schottky plots, UV–Vis absorption spectra and surface photocarrier orienting reaction results indicate that the enhanced photocatalytic performance of CdS/CoSx is owing to the fabrication of direct Z-Scheme heterojunction system which greatly improves the utilization, migration and separation rate of photo-generated carriers. To the best of our knowledge, this work is the first time to describe a CdS/CoSx direct Z-scheme system with 1D/2D nanostructure, which can expedite the transfer process of photogenerated carriers with strong redox energy to participate in photocatalytic reactions.  相似文献   

20.
For improving the photovoltaic performance of CdS/CdTe thin film solar cells, the CdS window layer is one of the most crucial factors. Here we demonstrate the photovoltaic performances of the low-environmental-load CdS/CdTe solar cell employing the CdS layer doped with various metal organic (MO) compounds, i.e., (CH3)2SnCl2, (C6H5)3GeCl, (CH3CO2)3In, [(C2H5)2NCS2]2Zn. Due to the MO doping, the degree of (1 1 1) preferential orientation of CdTe on the CdS layer is improved remarkably, influencing the increases in Voc and F.F. Being almost independent of the kind of the MO compounds, the short circuit current increases due to increasing optical transmittance of the MO-doped CdS layers. As a result, utilizing MO-doped CdS, we have achieved the conversion efficiency of 15.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号