首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We first present a method to rule out the existence of parameter non-increasing polynomial kernelizations of parameterized problems under the hypothesis P≠NP. This method is applicable, for example, to the problem Sat parameterized by the number of variables of the input formula. Then we obtain further improvements of corresponding results in (Bodlaender et al. in Lecture Notes in Computer Science, vol. 5125, pp. 563–574, Springer, Berlin, 2008; Fortnow and Santhanam in Proceedings of the 40th ACM Symposium on the Theory of Computing (STOC’08), ACM, New York, pp. 133–142, 2008) by refining the central lemma of their proof method, a lemma due to Fortnow and Santhanam. In particular, assuming that the polynomial hierarchy does not collapse to its third level, we show that every parameterized problem with a “linear OR” and with NP-hard underlying classical problem does not have polynomial self-reductions that assign to every instance x with parameter k an instance y with |y|=k O(1)⋅|x|1−ε (here ε is any given real number greater than zero). We give various applications of these results. On the structural side we prove several results clarifying the relationship between the different notions of preprocessing procedures, namely the various notions of kernelizations, self-reductions and compressions.  相似文献   

2.
In practice, the clearances of joints in a great number of mechanical systems are well under control. In these cases, some of the existing methods become unpractical because of the little differences in the order of magnitude between relative movements and computational errors. Assuming that the effects of impacts are negligible, we proved that both locations and forces of contacts in joints can be fully determined by parts of joint reaction forces. Based on this fact, a method particularly suited for multibody systems possessing frictional joints with tiny clearances is presented. In order to improve the efficiency of computation, recursive formulations are proposed based on the interactions between bodies. The proposed recursive formulations can improve the computation of joint reaction forces. With the methodology presented in this paper, not only the motion of bodies in a multibody system but also the details about the contacts in joints, such as forces of contacts and locations of contact points, can be obtained. Even with the assumption of impact free, the instants of possible impacts can be detected without relying upon any ambiguous parameters, as indicated by numerical examples in this paper.  相似文献   

3.
The sparse spliced alignment problem consists of finding a chain of zero or more exons from O(n) prescribed candidate exons of a DNA sequence of length O(n) that is most similar to a known related gene sequence of length n. This study improves the running time of the fastest known algorithm for this problem to date, which executes in O(n 2.25) time, or very recently, in O(n 2log 2 n) time, by proposing an O(n 2log n)-time algorithm.  相似文献   

4.
An efficient and accurate numerical scheme is proposed, analyzed and implemented for the Kawahara and modified Kawahara equations which model many physical phenomena such as gravity-capillary waves and magneto-sound propagation in plasmas. The scheme consists of dual-Petrov-Galerkin method in space and Crank-Nicholson-leap-frog in time such that at each time step only a sparse banded linear system needs to be solved. Theoretical analysis and numerical results are presented to show that the proposed numerical is extremely accurate and efficient for Kawahara type equations and other fifth-order nonlinear equations. This work is partially supported by the National Science Council of the Republic of China under the grant NSC 94-2115-M-126-004 and 95-2115-M-126-003. This work is partially supported by NSF grant DMS-0610646.  相似文献   

5.
An Improved FoE Model for Image Deblurring   总被引:1,自引:0,他引:1  
Image restoration from noisy and blurred image is one of the important tasks in image processing and computer vision systems. In this paper, an improved Fields of Experts model for deconvolution of isotropic Gaussian blur is developed, where edges are preserved in deconvolution by introducing local prior information. The edges with different local background in a blur image are retained since local prior information is adaptively estimated. Experiments indicate that the proposed approach is capable of producing highly accurate solutions and preserving more edge and object boundaries than many other algorithms.  相似文献   

6.
We describe a method of representing human activities that allows a collection of motions to be queried without examples, using a simple and effective query language. Our approach is based on units of activity at segments of the body, that can be composed across space and across the body to produce complex queries. The presence of search units is inferred automatically by tracking the body, lifting the tracks to 3D and comparing to models trained using motion capture data. Our models of short time scale limb behaviour are built using labelled motion capture set. We show results for a large range of queries applied to a collection of complex motion and activity. We compare with discriminative methods applied to tracker data; our method offers significantly improved performance. We show experimental evidence that our method is robust to view direction and is unaffected by some important changes of clothing.  相似文献   

7.
In recent years we have seen a tremendous growth in the amount of freely available 3D content, in part due to breakthroughs for 3D model design and acquisition. For example, advances in range sensor technology and design software have dramatically reduced the manual labor required to construct 3D models. As collections of 3D content continue to grow rapidly, the ability to perform fast and accurate retrieval from a database of models has become a necessity. At the core of this retrieval task is the fundamental challenge of defining and evaluating similarity between 3D shapes. Some effective methods dealing with this challenge consider similarity measures based on the visual appearance of models. While collections of rendered images are discriminative for retrieval tasks, such representations come with a few inherent limitations such as restrictions in the image viewpoint sampling and high computational costs. In this paper we present a novel algorithm for model similarity that addresses these issues. Our proposed method exploits techniques from spherical signal processing to efficiently evaluate a visual similarity measure between models. Extensive evaluations on multiple datasets are provided.  相似文献   

8.
Computing the duplication history of a tandem repeated region is an important problem in computational biology (Fitch in Genetics 86:623–644, 1977; Jaitly et al. in J. Comput. Syst. Sci. 65:494–507, 2002; Tang et al. in J. Comput. Biol. 9:429–446, 2002). In this paper, we design a polynomial-time approximation scheme (PTAS) for the case where the size of the duplication block is 1. Our PTAS is faster than the previously best PTAS in Jaitly et al. (J. Comput. Syst. Sci. 65:494–507, 2002). For example, to achieve a ratio of 1.5, our PTAS takes O(n 5) time while the PTAS in Jaitly et al. (J. Comput. Syst. Sci. 65:494–507, 2002) takes O(n 11) time. We also design a ratio-6 polynomial-time approximation algorithm for the case where the size of each duplication block is at most 2. This is the first polynomial-time approximation algorithm with a guaranteed ratio for this case. Part of work was done during a Z.-Z. Chen visit at City University of Hong Kong.  相似文献   

9.
Communication and coordination are the main cores for reaching a constructive agreement among multi-agent systems (MASs). Dividing the overall performance of MAS to individual agents may lead to group learning as opposed to individual learning, which is one of the weak points of MASs. This paper proposes a recursive genetic framework for solving problems with high dynamism. In this framework, a combination of genetic algorithm and multi-agent capabilities is utilised to accelerate team learning and accurate credit assignment. The argumentation feature is used to accomplish agent learning and the negotiation features of MASs are used to achieve a credit assignment. The proposed framework is quite general and its recursive hierarchical structure could be extended. We have dedicated one special controlling module for increasing convergence time. Due to the complexity of blackjack, we have applied it as a possible test bed to evaluate the system’s performance. The learning rate of agents is measured as well as their credit assignment. The analysis of the obtained results led us to believe that our robust framework with the proposed negotiation operator is a promising methodology to solve similar problems in other areas with high dynamism.  相似文献   

10.
In this paper we continue the study, which was initiated in (Ben-Artzi et al. in Math. Model. Numer. Anal. 35(2):313–303, 2001; Fishelov et al. in Lecture Notes in Computer Science, vol. 2667, pp. 809–817, 2003; Ben-Artzi et al. in J. Comput. Phys. 205(2):640–664, 2005 and SIAM J. Numer. Anal. 44(5):1997–2024, 2006) of the numerical resolution of the pure streamfunction formulation of the time-dependent two-dimensional Navier-Stokes equation. Here we focus on enhancing our second-order scheme, introduced in the last three afore-mentioned articles, to fourth order accuracy. We construct fourth order approximations for the Laplacian, the biharmonic and the nonlinear convective operators. The scheme is compact (nine-point stencil) for the Laplacian and the biharmonic operators, which are both treated implicitly in the time-stepping scheme. The approximation of the convective term is compact in the no-leak boundary conditions case and is nearly compact (thirteen points stencil) in the case of general boundary conditions. However, we stress that in any case no unphysical boundary condition was applied to our scheme. Numerical results demonstrate that the fourth order accuracy is actually obtained for several test-cases.  相似文献   

11.
Decheng Dai  Rong Ge 《Algorithmica》2011,61(4):1092-1104
We study the problem of solving simple stochastic games, and give both an interesting new algorithm and a hardness result. We show a reduction from fine approximation of simple stochastic games to coarse approximation of a polynomial sized game, which can be viewed as an evidence showing the hardness to approximate the value of simple stochastic games. We also present a randomized algorithm that runs in \(\tilde{O}(\sqrt{|V_{\mathrm{R}}|!})\) time, where |V R| is the number of RANDOM vertices and \(\tilde{O}\) ignores polynomial terms. This algorithm is the fastest known algorithm when |V R|=ω(log?n) and \(|V_{\mathrm{R}}|=o(\sqrt{\min{|V_{\min}|,|V_{\max}|}})\) and it works for general (non-stopping) simple stochastic games.  相似文献   

12.
We consider initial value problems for semilinear parabolic equations, which possess a dispersive term, nonlocal in general. This dispersive term is not necessarily dominated by the dissipative term. In our numerical schemes, the time discretization is done by linearly implicit schemes. More specifically, we discretize the initial value problem by the implicit–explicit Euler scheme and by the two-step implicit–explicit BDF scheme. In this work, we extend the results in Akrivis et al. (Math. Comput. 67:457–477, 1998; Numer. Math. 82:521–541, 1999), where the dispersive term (if present) was dominated by the dissipative one and was integrated explicitly. We also derive optimal order error estimates. We provide various physically relevant applications of dispersive–dissipative equations and systems fitting in our abstract framework.  相似文献   

13.
In this paper, a new lattice Boltzmann model based on the rebuilding-divergency method for the Poisson equation is proposed. In order to translate the Poisson equation into a conservation law equation, the source term and diffusion term are changed into divergence forms. By using the Chapman-Enskog expansion and the multi-scale time expansion, a series of partial differential equations in different time scales and several higher-order moments of equilibrium distribution functions are obtained. Thus, by rebuilding the divergence of the source and diffusion terms, the Laplace equation and the Poisson equation with the second accuracy of the truncation errors are recovered. In the numerical examples, we compare the numerical results of this scheme with those obtained by other classical method for the Green-Taylor vortex flow, numerical results agree well with the classical ones.  相似文献   

14.
This paper introduces and analyzes a numerical method based on discontinuous finite element methods for solving the two-dimensional coupled problem of time-dependent incompressible Navier-Stokes equations with the Darcy equations through Beaver-Joseph-Saffman’s condition on the interface. The proposed method employs Crank-Nicolson discretization in time (which requires one step of a first order scheme namely backward Euler) and primal DG method in space. With the correct assumption on the first time step optimal error estimates are obtained that are high order in space and second order in time.  相似文献   

15.
We investigate the evolution of the probability distribution function in time for some wave and Maxwell equations in random media for which the parameters, e.g. permeability, permittivity, fluctuate randomly in space; more precisely, two different media interface randomly in space. We numerically compute the probability distribution and density for output solutions. The underlying numerical and statistical techniques are the so-called polynomial chaos Galerkin projection, which has been extensively used for simulating partial differential equations with uncertainties, and the Monte Carlo simulations.  相似文献   

16.
Current studies on large-scale remotely sensed images are of great national importance for monitoring and evaluating global climate and ecological changes. In particular, real time distributed high-performance visualization and computation have become indispensable research components in facilitating the extraction of remotely sensed image textures to enable mining spatiotemporal patterns and dynamics of landscapes from massive geo-digital information collected from satellites. Remotely sensed images are usually highly correlated with rich landscape features. By exploiting the structures of these images and extracting their textures, fundamental insights of the landscape can be derived. Furthermore, the interdisciplinary collaboration on the remotely sensed image analysis demands multifarious expertise in a wide spectrum of fields including geography, computer science, and engineering.  相似文献   

17.
Realistic images can be computed at interactive frame rates for Computer Graphics applications. Meanwhile, High Dynamic Range (HDR) rendering has a growing success in video games and virtual reality applications, as it improves the image quality and the player’s immersion feeling. In this paper, we propose a new method, based on a physical lighting model, to compute in real time a HDR illumination in virtual environments. Our method allows to re-use existing virtual environments as input, and computes HDR images in photometric units. Then, from these HDR images, displayable 8-bit images are rendered with a tone mapping operator and displayed on a standard display device. The HDR computation and the tone mapping are implemented in OpenSceneGraph with pixel shaders. The lighting model, together with a perceptual tone mapping, improves the perceptual realism of the rendered images at low cost. The method is illustrated with a practical application where the dynamic range of the virtual environment is a key rendering issue: night-time driving simulation.  相似文献   

18.
The long-term dynamic behavior of many dynamical systems evolves on a low-dimensional, attracting, invariant slow manifold, which can be parameterized by only a few variables (“observables”). The explicit derivation of such a slow manifold (and thus, the reduction of the long-term system dynamics) is often extremely difficult or practically impossible. For this class of problems, the equation-free framework has been developed to enable performing coarse-grained computations, based on short full model simulations. Each full model simulation should be initialized so that the full model state is consistent with the values of the observables and close to the slow manifold. To compute such an initial full model state, a class of constrained runs functional iterations was proposed (Gear and Kevrekidis, J. Sci. Comput. 25(1), 17–28, 2005; Gear et al., SIAM J. Appl. Dyn. Syst. 4(3), 711–732, 2005). The schemes in this class only use the full model simulator and converge, under certain conditions, to an approximation of the desired state on the slow manifold. In this article, we develop an implementation of the constrained runs scheme that is based on a (preconditioned) Newton-Krylov method rather than on a simple functional iteration. The functional iteration and the Newton-Krylov method are compared in detail using a lattice Boltzmann model for one-dimensional reaction-diffusion as the full model simulator. Depending on the parameters of the lattice Boltzmann model, the functional iteration may converge slowly or even diverge. We show that both issues are largely resolved by using the Newton-Krylov method, especially when a coarse grid correction preconditioner is incorporated.  相似文献   

19.
Interacting and annealing are two powerful strategies that are applied in different areas of stochastic modelling and data analysis. Interacting particle systems approximate a distribution of interest by a finite number of particles where the particles interact between the time steps. In computer vision, they are commonly known as particle filters. Simulated annealing, on the other hand, is a global optimization method derived from statistical mechanics. A recent heuristic approach to fuse these two techniques for motion capturing has become known as annealed particle filter. In order to analyze these techniques, we rigorously derive in this paper two algorithms with annealing properties based on the mathematical theory of interacting particle systems. Convergence results and sufficient parameter restrictions enable us to point out limitations of the annealed particle filter. Moreover, we evaluate the impact of the parameters on the performance in various experiments, including the tracking of articulated bodies from noisy measurements. Our results provide a general guidance on suitable parameter choices for different applications.
Jürgen GallEmail:
  相似文献   

20.
In automatic speech recognition, the phone has probably been a dominating sub-word unit for more than one decade. Context Dependent phone or triphone modeling accounts for contextual variations between adjacent phones and state tying addresses modeling of triphones that are not seen during training. Recently, syllable is gaining momentum as a new sub-word unit. Syllable being a larger unit than a phone addresses the severe contextual variations between phones within it. Therefore, it is more stable than a phone and models pronunciation variability in a systematic way. Tamil language has challenging features like agglutination and morpho-phonology. In this paper, attempts have been made to provide solutions to these issues by using the syllable as a sub-word unit in an acoustic model. Initially, a small vocabulary context independent word models and a medium vocabulary context dependent phone models are developed. Subsequently, an algorithm based on prosodic syllable is proposed and two experiments have been conducted. First, syllable based context independent models have been trained and tested. Despite large number of syllables, this system has performed reasonably well compared to context independent word models in terms of word error rate and out of vocabulary words. Subsequently, in the second experiment, syllable information is integrated in conventional triphone modeling wherein cross-syllable triphones are replaced with monophones and the number of context dependent phone models is reduced by 22.76% in untied units. In spite of reduction in the number of models, the accuracy of the proposed system is comparable to that of the baseline triphone system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号