首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
左洋  龙科慧  刘兵  刘金国  周磊  乔克 《电子学报》2015,43(10):1936-1940
为实现高精度光电编码器非匀速转动时动态细分误差的检测,提出了一种基于非均匀采样的莫尔条纹光电信号分析方法.首先,利用曲线拟合的最小二乘法将采集到的编码器非均匀信号数据重构出真实的信号波形.然后,根据离散傅里叶变换算法分析重构信号,同时推导出信号的频率、幅值和相位的计算表达式,运用软件仿真评估算法可行性.最后,采用该方法对某21位绝对式光电轴角编码器精码信号进行分析,根据信号参数与细分误差的关系获得动态细分误差,其细分极值误差为+2.41"和-3.08".实验结果表明,该方法利用信号重构和傅里叶变换算法得到信号参数,真实的反应了莫尔条纹信号质量,在编码器非匀速转动时,可有效地测量动态细分误差,为实际工作现场编码器精度误差的实时检测奠定了基础.  相似文献   

2.
莫尔条纹光电信号自动补偿系统   总被引:1,自引:1,他引:1       下载免费PDF全文
高旭  万秋华  卢新然  杜颖财  陈伟 《红外与激光工程》2016,45(2):217002-0217002(6)
为了保证高精度光电编码器在恶劣工作环境下的精确测量,建立一种基于高分辨力数字电位计+DSP+CPLD的莫尔条纹光电信号自动补偿系统。首先,介绍了自动补偿系统的工作原理及构成,并设计了系统使用过程中的工作模式;融合莫尔条纹信号各个偏差的补偿算法,建立了光电信号细分误差的综合补偿模型;然后,具体阐述了系统的硬件设计、相关软件设计,并分析了补偿系统自身存在的系统误差;最后,以24位光电编码器为实验对象,对该补偿系统进行测试分析,实验结果表明:自动补偿系统可实现编码器精码信号直流电平漂移、等幅性偏差、正交性偏差及二次、三次、五次谐波偏差的综合补偿,可使实际的静态细分误差减小0.61。该系统可用在编码器的工作现场,实现莫尔条纹信号细分误差的自动修正。  相似文献   

3.
莫尔条纹快速细分在光电轴角编码器中的应用   总被引:6,自引:2,他引:6  
详细介绍了莫尔条纹高插补系数快速细分的原理、硬件设计和软件设计,并将此细分装置应用于光电轴角编码器处理电路中。采用乘法倍频电路可以完成莫尔条纹信号的四倍频,提高了信号的正交性,达到了实验的要求。采用16位CHMOS微控制器80296SA进行软件8 192份细分,可以使光电轴角编码器的分辨率达到0.006″,测角精度σ≤0.4″,且该系统执行一次细分程序所需要的时间小于50μs。  相似文献   

4.
为了保证高精度光电轴角编码器在恶劣工作条件下的细分精度,设计了基于高分辨率数字电位计的实时补偿处理系统。依据莫尔条纹光电信号的数学模型,说明了由信号等幅性偏差和直流电平漂移引起的细分误差的空间分布特征,并得出误差规律及计算公式,从编码器的光机装调、码盘均匀性、光敏元件调试等制作环节出发,指出了编码器光电信号细分误差的根本特性;受高精度光电编码器分辨力的约束,从编码器光敏元件输出莫尔条纹信号的形式出发,构建了分辨率为0.1 的数字电位计查找表;并设计了实时补偿的关键算法。以23位光电编码器为实验对象,在-40~60 ℃条件下对补偿处理系统测试,实验结果表明:直流漂移1.2%,等幅性2%,且自动补偿时间约为3 s,满足编码器分辨力(0.154)和工作实时性的要求。该方法可实际应用于编码器系统,能够提高编码器的环境适应性和测角可靠性。  相似文献   

5.
光电轴角编码器莫尔条纹误差信号补偿   总被引:1,自引:2,他引:1       下载免费PDF全文
为保证光电轴角编码器在恶劣工作环境下的细分精度,提出一种基于Hilbert-Huang变换的误差补偿方法。针对编码器系统受正弦振动引起的测角故障,提出一种莫尔条纹误差信号的数学模型;采用经验模态分解算法,获取误差信号的本征模态函数,分别对本征模态函数进行希尔伯特变换解调分析,提取包含干扰特征的莫尔条纹信号;同时,基于光电轴角编码器的精码信号方波信息,获取精码信号的基波时域频率;提取与基波时域频率匹配的本征模态函数包络分量。以24位光电轴角编码器为实验对象,实验结果表明:编码器莫尔条纹信号动态细分误差峰值由约200降低到1.54左右,细分精度明显提高。  相似文献   

6.
吴永芝  万秋华  刘义生 《半导体光电》2009,30(6):927-930,934
光电编码器在运动状态下输出的实际信号与理想的正弦波或三角渡存在着偏差,在此偏差信号的基础上进行电子学细分就会产生细分误差.通过对动态波形数据直接进行运动状态分析,采用建立运动模型的方法,确定传感器的原始位置波形参数.将得到的波形参数带入细分误差公式,即可以求取细分误差,并为误差补偿提供了理论基础.此法作为一种新的误差检测方法,适用于现场编码器精度检测和校准.该方法克服了传统误差检测方法装置复杂,不适合现场环境复杂条件下的动态检测的缺陷,有很高的应用价值.
Abstract:
While a photoelectric encoder working at the dynamic state, there are deviations between the actual output signals and the theoretical two sine or triangular signals. Interpolating on this deviation signals will result in interpolation errors. In this paper, the original waveform parameters are obtained by analyzing the actual dynamic waveform data and building a dynamic model. Bringing these parameters into interpolation error equation, and then errors can be worked out which provides a theoretical basis for error compensating. As a new error detection method, it is suitable for on-site encoder accuracy detection and calibration. The new method with a high application value overcomes the defects existing in traditional error detection devices, such as the complexity of equipments and the unsuitability for dynamic detection under complex on-site conditions.  相似文献   

7.
提高光电轴角编码器细分精度的改进粒子群算法   总被引:2,自引:2,他引:2       下载免费PDF全文
为提高光电轴角编码器的细分精度及莫尔条纹光电信号的细分倍数,设计了一种基于改进粒子群算法的信号正弦性修正方法。首先,根据莫尔条纹光电信号的数学模型,分析信号质量指标对细分误差的影响;并从编码器的制作、调试、使用等环节出发,指出信号细分误差产生的根本原因;然后,对改进粒子群算法的基本原理和实现步骤做了具体阐述;最后,以21 位光电编码器为实验对象,依据其精码转换的方波信息实现精码信号的自适应采样,同时应用改进算法对采集的编码器原始光电信号进行数据预处理,通过辨识信号模型中的3 个待定参量,直接实现信号等幅性偏差、稳定性偏差、正交性偏差的修正;对算法处理后的莫尔条纹信号进行细分精度检测,实验结果表明:编码器细分误差峰值由19.08降低到2.86,细分精度明显提高。  相似文献   

8.
为了实现在低速情况下系统速度的检测,提出了一种基于莫尔条纹光电信号和非线性跟踪微分器的测量角速度和角加速度的方法。首先,分析了莫尔条纹光电信号特性;然后结合非线性跟踪微分器理论,对编码器输出的光电信号进行滤波和相位补偿;最后,将两级非线性跟踪微分器级联,同时得到速度和加速度。实验结果表明:该方法增加了低速时采样频率,提高了速度测量的平稳性、精度和实时性。将该方法应用于某采用21 位编码器作为角度传感器的系统中,成功实现了速度及加速度地检测。当速度降低到0.001 7()/s 时,设置采样时间为5 ms,则采样频率为通常方法的20 倍,更好的解决了低速系统对测速平稳性、精度和实时性的要求。  相似文献   

9.
双光栅莫尔条纹的傅里叶分析   总被引:1,自引:0,他引:1  
采用了傅里叶频谱的分析方法,对双光栅产生的莫尔条纹进行了分析,导出了不同光强分布对应的莫尔条纺方程。  相似文献   

10.
单幅干涉条纹图的高精度波面重建技术   总被引:1,自引:2,他引:1       下载免费PDF全文
结合莫尔条纹、傅里叶变换和数字相移技术实现了对单幅干涉条纹图的高精度相位计算和波面重建.首先,用计算机生成与被处理干涉条纹频率相近的数字相移条纹图,与实际干涉条纹图叠加得到相移莫尔条纹图;然后,利用傅里叶变换、双频滤波、傅里叶反变换和相移技术得到干涉条纹图的相位数据;最后利用波面拟合技术重构原干涉条纹图对应的波面形状.研究结果表明,该技术不仅消除了干涉仪硬件相移产生的非线性误差和滤波时的频谱移中误差,高精度获得了单幅干涉条纹图对应的波前,而且简化了系统的机械结构.同时,对环境的要求明显降低,特别适用于生产现场的检测.  相似文献   

11.
陈好  贾静  王询  何易德  蒋泽伟 《激光技术》2020,44(4):399-403
为了满足基于泰伯-莫尔条纹长焦距测量技术在测量激光材料热效应等效热焦距时对测量速度的需求,提出了一种莫尔条纹倾角快速求解算法。在对传统频域迭代法测量速度影响因素分析基础上,基于迭代运算坐标值相似性和离散傅里叶变换可分离性,将频谱值求解过程中包含小数值的坐标点进行公共项分离, 公共部分采用傅里叶变换指数项进行滤波,不同部分在提取相似项的基础上进行组合运算,将2维条纹图像傅里叶变换降为1维进行处理;同时相关指数项被限定在极小的可知范围,极大地方便了查表运算和位运算的采用。结果表明,采用相同配置计算机,在保证测量精度的前提下,将完成一次测量的测量时间从15s降低到0.4s,测量速度提高了38倍。该算法很好地满足了激光材料热效应等效热焦距参量快速测量的应用需求。  相似文献   

12.
数字莫尔条纹滤波处理是利用莫尔条纹进行非球面检测的关键技术之一,滤波结果直接影响非球面检测的精度,分别从空域和频域两个角度对滤波算法进行了讨论分析,并进行了模拟实验。结果表明,经两种方法处理后恢复的波面得到了较好的结果,全孔径相位分布残差的均方根(RMS)值分别为0.024λ和0.035λ,证明了滤波方法是可行的。  相似文献   

13.
编码器的光电信号经过电路系统的处理,最终获得代表测量角度的数据代码.电路处理系统中最为关键的是细分技术,它是编码器电路处理系统技术中的专业技术.本文详细介绍了一种细分原理和常用的实现方法,说明了编码器测量基准光栅线数和编码器代码分辨力的关系,分析了细分误差产生的原因.  相似文献   

14.
15.
一种辨别莫尔条纹移动方向的实时性辨向电路   总被引:1,自引:1,他引:0  
分析了传统辨向电路在莫尔条纹高倍数细分时有一定的时间延迟.对于小幅度的振动信号不能实现正确的辨向,在高倍数细分电路中有着难以克服的缺陷。进而提出了一种新的实时性的辨向电路,对实现高倍数细分有重要意义。  相似文献   

16.
本文用频谱分析的观点对叠加莫尔,付里叶变换莫尔,扫描莫尔及相移扫描莫尔的方法进行了分析,提出了这几种莫尔等高方法的付里叶描述,文中讨论了这几种方法在频域中的联系,从频域上看这些方法的本质特征是:使携带莫尔信息的基频移中而获得莫尔条纹。  相似文献   

17.
根据离散傅里叶变换(DFT)理论和其系数的特点,提出了一种信号离散傅里叶变换系数来构造频率修正项的单频信号频率估计算法。算法利用峰值及前后1个位置的DFT变换系数得到频率修正项的初始值,再迭代计算修正后峰值前后位置的DFT系数来得到频率修正项的精细值。理论分析和仿真结果表明,算法在低信噪比下具有好的频率估计精度并能减少迭代次数。  相似文献   

18.
光电编码器通常利用细分两路正交的码盘精码信号达到高分辨力的目的,为使细分技术更加完善,对基于三角波和基于正余弦波的两种细分方法进行了专题研究。分别对理想信号中存在直流误差、幅值误差、基波相位误差、高次谐波误差几种典型误差情况进行了分析,比较两种基于不同波形细分方法的抗干扰能力。实验对精码信号介于正余弦波和三角波之间的编码器进行测试,对于同一台编码器,采用正余弦波细分时精度为36,采用三角波细分时精度为42。结果表明:基于正余弦波的细分方法抗干扰能力优于基于三角波的细分方法。对于高精度光电编码器研制和生产时,可利用正余弦波对精码信号进行细分或将实际信号校正至标准正余弦波再细分。  相似文献   

19.
视差自由立体显示中视差生成元件参数的不合理设定会导致影响三维图像的莫尔条纹产生。因此,莫尔条纹消除是视差自由立体显示中的关键问题之一。本文简单介绍了3种视差自由立体显示原理。综述了视差自由立体显示中的避免莫尔条纹产生和莫尔条纹最小化2种莫尔条纹消除技术,着重介绍了莫尔条纹最小化技术,包括工程实验、莫尔条纹图像仿真、余弦光栅叠加模型近似分析和序数方程方法和傅里叶分析方法的一致性分析等技术。其中后2种技术给出了视差自由立体显示中莫尔条纹最小化的详细理论分析和解释,并为其他视差自由立体显示技术提供了设计依据。  相似文献   

20.
莫尔条纹的乘法倍频是一种利用函数本身的性质,来提高原始信号重复频率的细分方法.它不仅可以解决高速运动装置位移的精密测量问题,而且还可以同其它电子学细分方案结合使用,大大提高计量光栅系统的分辨率.由于莫尔条纹原始信号质量的好坏,直接决定了倍频后信号波形的失真情况.于是,针对莫尔条纹原始信号的正弦性、正交性、等幅性及含直流电平这几种典型特征,文中采用了美国Mathworks公司最新推出的Matlab软件对以上莫尔条纹的原始信号进  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号