首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区.  相似文献   

2.
基于PSCF与CWT模型的乌鲁木齐市大气颗粒物源区分析   总被引:2,自引:0,他引:2  
利用MeteoInfoMap软件和GDAS全球同化气象数据,对乌鲁木齐市2014-2019年四季72 h气团后向轨迹进行聚类分析.同时,结合小时PM2.5和PM10浓度数据,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)分析了乌鲁木齐市颗粒物不同季节潜在源区及其对研究区颗粒物浓度的贡献.结果 表明:...  相似文献   

3.
基于南京市空气质量数据和NCEP全球再分析资料,利用后向轨迹模式计算了2019年3月至2020年2月以南京城区为受体点的逐小时气团24 h后向轨迹,并将后向轨迹数据和PM2.5浓度数据结合,进行轨迹聚类和潜在源区分析.结果表明,研究期间南京市ρ(PM2.5)平均值为(36±20)μg·m-3,超过国家二级标准限值的污染天数为17 d,ρ(PM2.5)的季节变化特征明显:冬季(49μg·m-3)>春季(42μg·m-3)>秋季(31μg·m-3)>夏季(24μg·m-3),全年PM2.5浓度和地面气压显著正相关,而跟气温、相对湿度、降水量和风速均为显著负相关关系;春季气团输送路径为7条,其余季节均为6条,其中,春季的西北路和东南偏南路,秋季东南路和冬季西南路是各季主要的污染输送路径,均具有传输距离短,气团移动慢的特点,说明静稳天气下本地累积是PM2.5出...  相似文献   

4.
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱.  相似文献   

5.
基于后向轨迹模式(HYSPLIT)模拟了葫芦岛市2019—2021年气流的72 h后向轨迹,同时结合同期的逐日PM2.5浓度数据,采用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)探讨了葫芦岛市PM2.5不同季节的潜在源区及其对葫芦岛市PM2.5浓度的贡献。结果表明:冬季,葫芦岛市最主要的潜在源区为乌兰布和沙漠,其次为蒙古国东南部、内蒙古东部、京津冀地区和辽宁省西部城市群;秋季葫芦岛市最主要的潜在源区为辽宁省南部、京津冀地区、山东省北部和河南省北部;春季的相对高值区域零星分布在京津冀地区、山东省和渤海海域等地区,夏季相对高值区域零星分布在京津冀地区和山东省西北部。  相似文献   

6.
利用2018年3月—2021年2月环境和气象数据对皖南地区铜陵市大气颗粒物的污染特征和潜在贡献源进行了系统性研究.铜陵市大气颗粒物污染具有明显的季节变化特征,冬季污染物浓度最高,PM2.5和PM10平均为(60.3±31.0)μg·m-3和(89.2±42.2)μg·m-3.计算发现PM2.5/PM10超过0.5,铜陵市的大气颗粒物污染问题与细颗粒物关系密切.后向轨迹聚类分析表明铜陵市大气颗粒物的输送路径具有季节性差异.春季以西北、东北和西南方向气流为主,占比83.73%;夏季以东南和南部方向气流为主,占比82.90%;秋季以东北气流为主,占比51.00%;冬季则是以北方和西北气流为主,占比69.81%.其中,冬季气流轨迹所对应的PM2.5和PM10的浓度最高,平均为59.7和92.0μg·m-3;夏季最低,平均为23.8和43.8μg·m-3.潜在源贡献因子(WPSC...  相似文献   

7.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

8.
天津PM10和NO2输送路径及潜在源区研究   总被引:2,自引:0,他引:2  
王郭臣  王珏  信玉洁  陈莉 《中国环境科学》2014,34(12):3009-3016
利用HYSPLIT模型和全球资料同化系统(GDAS)气象数据,用聚类方法对2012年12月~2013年11月期间抵达天津的逐日72h气流后向轨迹按不同的季节进行归类.并利用相应的PM10和NO2浓度日监测数据,分析了不同季节气流轨迹对天津污染物浓度的影响.运用潜在源贡献(PSCF)因子分析法和浓度权重轨迹(CWT)分析法分别模拟了不同季节PM10和NO2潜在PSCF和CWT.结果表明,不同方向气流轨迹对天津PM10和NO2潜在源区分布的影响存在显著差异.天津PM10和NO2日均浓度最高值对应的气流轨迹均集中在冬、春和秋季等来自内陆的西北气流;夏季影响天津的气流轨迹主要来自西北和东南方向,对天津PM10和NO2的日均浓度贡献较小.天津PM10和NO2的PSCF与CWT分布特征类似,最高值主要集中在天津本地以及邻近的河北省和山东省,是天津这两种污染物主要潜在源区.  相似文献   

9.
文章利用2016~2017年冬季沈阳地区气象数据和环境空气污染物浓度数据,综合分析沈阳地区冬季环境空气污染特征,分析颗粒物输送路径以及潜在源区贡献情况.结果表明,沈阳地区冬季污染时段内PM2.5是主要污染物,PM2.5平均浓度达到149μg/m3,最大值达到273 μg/m3.沈阳地区环境空气颗粒物除来源于本地排放外,...  相似文献   

10.
《环境科学与技术》2021,44(5):162-170
该文采用空气质量指数(AQI)分析了2015-2019年哈尔滨市不同季节首要污染物的污染特征,利用HYSPLIT后向轨迹模式对近5年四季逐日72 h后向轨迹气流进行聚类分析,结合AQI数据,揭示哈尔滨市大气污染物传输路径及潜在源贡献因子和浓度权重轨迹的季节差异。结果表明:哈尔滨市优良天数占比从2015年的66%上升到2019年的83%,5年中2015年为大气污染较为严重的一年,5年来空气质量呈明显好转趋势。哈尔滨市大气污染呈现出不同的季节特征:优良天数平均值占比从高到低依次为夏季(94.6%)秋季(84.4%)春季(80%)冬季(53%),O3和PM2.5分别为空气质量最优的夏季与最差的冬季的首要污染物,春季和秋季首要污染物表现为由NO2和PM2.5复合型污染向以O3为主导的气态型污染转变。各季节轨迹分布与其所处的地理位置和季风气候密切相关,春季来自山东东部、渤海、辽宁、吉林到达哈尔滨的轨迹污染率最高;夏季污染率较高的气流轨迹均来自南部方向,主要传输方向自渤海越过山东东部到达青岛地区,经辽宁、吉林汇入哈尔滨;秋季污染率较高的轨迹分布最为分散,主要以近距离输送轨迹为主;冬季AQI值显著高于其他季节,可能与北方冬季进入燃煤采暖期,污染物排放增多有关,主要集中分布于西北方向输送进入哈尔滨,呈现出输送轨迹越短,污染率越高的特点,其中来自吉林的最短转向路径挟带的污染物浓度最高,其次为由俄罗斯东南部经内蒙古过吉林到达哈尔滨,说明吉林是影响哈尔滨市冬季大气污染物浓度偏高的主要地区。  相似文献   

11.
分析2015~2021年景洪市大气污染特征,识别日均PM2.5浓度超过国家空气质量二级标准所在月(超标月)。利用混合单粒子拉格朗日积分轨迹模型计算景洪市PM2.5超标月的逐日72h后向轨迹,并结合景洪市PM2.5浓度,通过聚类、潜在源区贡献因子和浓度权重轨迹因子等分析方法,识别景洪市日均PM2.5超标月的主要传输路径和潜在源区。结果表明:景洪市2~5月为日均PM2.5超标月;景洪市2~5月PM2.5的传输主要来自其西向、西南和南向,且中短距离和低空传输对应高PM2.5浓度;景洪市PM2.5源区主要位于缅甸中部、老挝西北部和泰国北部;通过归一化处理浓度权重轨迹因子可知,景洪市2~5月PM2.5传输的源区主要来自缅甸,贡献41%~50%,其次为泰国和老挝,分别为21%~27%和5%~12%。基于2015~2021年2~5月中南半岛火点数分布及与景洪市PM2.5浓度相关性分析,进一步揭示影响景洪市PM2.5的主要排放源为缅甸生物质开放燃烧。研究可为景洪市建立跨境区域联防联控措施以及未来气候变化研究提供指导。  相似文献   

12.
基于HYSPLIT后向轨迹模式和NCEP的GDAS数据(2019年3月~2020年2月),对抵达帕米尔高原东部的48h后向气团轨迹按季节聚类,其PM10和PM2.5年均值分别为(29.4±16.4),(9.3±5.1)μg/m3,大气颗粒物以PM10为主,结合同期PM10浓度数据,分析不同路径对帕米尔高原东部PM10聚集的贡献,并利用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),揭示研究期间帕米尔高原东部不同季节PM10的潜在源分布及其贡献水平.结果表明:帕米尔高原东部PM10输送路径的季节特征明显,春季来自中亚的西风气流对应PM10高值,夏季来自中国新疆西部的气流也对应较高PM10值,秋季各轨迹对应PM10值相当,冬季来自南亚方向气流对应PM10高值.PM10春季贡献源区主要位于中国新疆西部、阿富汗东北部、巴基斯坦东北部、塔吉克斯坦中部及东部地区,夏季主要位于中国新疆西部喀什与和田北部地区,秋季主要位于土库曼斯坦东部、乌兹别克斯坦东南部、巴基斯坦北部、阿富汗北部与塔吉克斯坦南部接壤地区,冬季主要位于巴基斯坦东北部、印度北部以及阿富汗北部.  相似文献   

13.
帕米尔高原东部PM10输送路径及潜在源分析   总被引:2,自引:0,他引:2  
基于HYSPLIT后向轨迹模式和NCEP的GDAS数据(2019年3月~2020年2月),对抵达帕米尔高原东部的48h后向气团轨迹按季节聚类,其PM10和PM2.5年均值分别为(29.4±16.4),(9.3±5.1)μg/m3,大气颗粒物以PM10为主,结合同期PM10浓度数据,分析不同路径对帕米尔高原东部PM10聚集的贡献,并利用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),揭示研究期间帕米尔高原东部不同季节PM10的潜在源分布及其贡献水平.结果表明:帕米尔高原东部PM10输送路径的季节特征明显,春季来自中亚的西风气流对应PM10高值,夏季来自中国新疆西部的气流也对应较高PM10值,秋季各轨迹对应PM10值相当,冬季来自南亚方向气流对应PM10高值.PM10春季贡献源区主要位于中国新疆西部、...  相似文献   

14.
余创  张玉秀  陈伟 《中国环境科学》2021,41(7):3055-3065
基于2015~2017年银川市PM2.5逐小时质量浓度和同期气象数据,采用气流后向轨迹聚类分析法、潜在来源贡献函数法(PSCF)和浓度权重轨迹分析法(CWT)研究银川市PM2.5的输送路径及潜在源分布.结果表明:2013~2018年银川市大气PM2.5质量浓度呈先升高后下降的趋势,其中2016年PM2.5浓度年均值最高(54.25±20.91)μg/m3;在四季变化中,冬季PM2.5浓度最高(75.11±29.21)μg/m3,夏季最低(31.83±7.09)μg/m3.聚类分析表明西北方向气流是银川市四季PM2.5主要的输送路径,在春、秋、冬3季PM2.5均为西北长距离输送路径;而在夏季,短距离输送气流是PM2.5主要的输送方式.PSCF与CWT分析表明,冬季PM2.5潜在源区范围最大,主要集中在西北-东南走向的潜在贡献源区带,包括新疆中东部、青海省北部、河西走廊地区、内蒙古西南部、甘肃省南部以及宁夏西北部;春、秋两季PM2.5潜在源区主要位于新疆东部与甘肃省交界区域、甘肃省东南部、湖北北部、陕西西南部以及重庆北部;夏季的潜在源区范围最小,主要集中在新疆东部与甘肃交界区域.在PM2.5重污染天气期间,其主要来源于西北方向气流,潜在源区主要分布在新疆东部与甘肃交界区域、内蒙古西南部与甘肃交界区域以及甘肃中南部地区.因此,在实施防风固沙的基础上,加强区域环境合作,实施大气污染联合防治,可以有效缓解银川乃至京津冀地区的大气污染.  相似文献   

15.
为了揭示柳州城区春冬季PM2.5的来源及其潜在源区分布和贡献,利用2018年24h自动监测数据和气象数据对柳州市大气污染物浓度变化特征进行了分析,并且使用后向轨迹模型(HYSPLIT)对春冬季柳州市PM2.5逐日72h气流后向轨迹和前向轨迹进行聚类分析,同时结合潜在源贡献因子分析法(WPSCF)和轨迹浓度权重法(WCWT)对其潜在源区和浓度贡献进行了分析.结果显示,(1)在研究期内,不利的主导风向和工业区布局导致研究区PM2.5在春冬季污染较严重,且工业源和交通源是其主要本地来源;(2)春冬季PM2.5高值主要来源于西北和东南方向,其中,西北向PM2.5主要来源于本地排放,且浓度在空间上呈现西高东低的趋势;(3)春季后向轨迹PM2.5浓度整体大于冬季,春冬季中对柳州市PM2.5影响最大轨迹均来自东部的短距离输送,而来自西北的气流轨迹输对PM2.5贡献最低.春冬季柳州市大气PM2.5通过气流传...  相似文献   

16.
利用2017年10月~2018年8月的PM10、PM2.5、PM1质量浓度数据以及NCEP全球再分析气象资料,分析乌鲁木齐市区和南郊山区颗粒物浓度变化特征,结合HYSPLIT后向轨迹模型、潜在源贡献因子分析(PSCF)以及浓度权重轨迹分析(CWT)分析市区颗粒物潜在源区.研究结果表明:①市区PM2.5的超标天数为26d,南郊山区无PM2.5超标,市区PM10的超标天数是南郊山区的3.5倍,市区日均值及月均值质量浓度是南郊山区的2~7倍,市区呈现冬高夏低的季节特征,南郊山区春季最高;②乌鲁木齐市区PM10日变化存在3个峰值,PM2.5、PM1为双峰型分布,南郊山区均呈双峰分布;并存在季节性周末效应;③长短两支聚类气流轨迹对乌鲁木齐市区颗粒物浓度影响较大,春夏气流来自中亚,秋冬来源于北疆周边地区;④颗粒物潜在源区分布季节特征显著,高值区主要为昌吉、巴州、吐鲁番等周边地区,西北部中亚地区也是颗粒物重要来源区域之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号