首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)的吸附.通过选择纳米级锐钛矿替代P25型二氧化钛作为反应原材料,成功将水热反应时间从72 h缩短至6 h.TEM,XRD和FT-IR等表征证实了新合成材料的为管状钛酸盐结构.TNTs对3种重金属离子的吸附动力学均符合准二级动力学方程,吸附等温线均符合Langmuir模型,且对Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)的理论最大吸附量分别高达525.58、214.41和69.65 mg·g~(-1).p H=5时,吸附动力学实验表明对于初始浓度分别为200、100和50 mg·L~(-1)的Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ),在TNTs上的平衡吸附量分别为513.04、212.46和66.35 mg·g~(-1),吸附性能优于传统吸附材料.合成的TNTs结构为三联的[Ti O6]八面体骨架和层间H+/Na+,其吸附机理为金属阳离子与TNTs层间Na+的离子交换.同时,共存离子对吸附的影响实验表明TNTs对重金属离子的吸附存在选择性,即使在较高的共存离子浓度下(10 mmol·L~(-1))TNTs对目标重金属离子的吸附性能依然优异.该研究提供了一种应用钛酸纳米材料高效去除水体重金属离子的方法.  相似文献   

2.
雷立  晋银佳  王婷  赵枭  晏友  刘文 《环境科学》2015,36(7):2573-2580
以P25型Ti O2为原料,经碱热和酸热反应合成了Ti O2/TNTs复合纳米材料,该材料皆具钛酸纳米管(TNTs)和Ti O2晶相.Cd(Ⅱ)在Ti O2/TNTs上的吸附动力学过程很快,30 min即可达到吸附平衡,此外,Langmuir等温模型拟合所得最大吸附量达120.34 mg·g-1,其主要吸附机制为Cd2+与复合材料中TNTs层间Na+/H+的离子交换.Ti O2/TNTs对苯酚的吸附量较低(0.36 mg·g-1),因此光催化反应以实现苯酚的降解是必需的.构建的吸附-光催化系统可实现Cd(Ⅱ)和苯酚的同步有效去除,180 min时二者的去除率分别可达到99.6%和99.7%.Cd(Ⅱ)的去除源于暗室下复合材料中TNTs相的吸附,而苯酚的去除在于后续复合材料中Ti O2相的光催化.Cd(Ⅱ)的共存可提高苯酚的光催化降解效率,原因在于Cd(Ⅱ)吸附进入材料层间后有助于材料光催化性能的提升.共存Na+对Cd(Ⅱ)和苯酚在Ti O2/TNTs上的同步去除影响极小;而共存Ca2+由于竞争吸附和促进材料团聚的原因,会轻微抑制Cd(Ⅱ)在Ti O2/TNTs上的吸附,但对苯酚的光催化降解影响较小.此外,Ti O2/TNTs可有效循环利用,经HNO3解吸和Na OH再生后,3次循环后材料对Cd(Ⅱ)和苯酚的去除率依然可达91.7%和98.1%.该研究提供了一种合成皆具吸附和光催化性能的钛系材料的方法,对于应用纳米材料实现水体环境中重金属和有机物的同时去除具有一定的借鉴意义.  相似文献   

3.
磁性竹基炭对Pb2+、Cd2+与Cu2+的吸附机理研究   总被引:5,自引:3,他引:2  
采用微波辐照技术,以枯竹子为碳源制备了磁性竹基炭(BBMC),并将其用于对重金属离子Pb2+、Cd2+与Cu2+的吸附去除.同时,分析了吸附时间、pH值、离子强度及初始金属离子浓度等条件对吸附的影响,讨论了BBMC对3种金属离子的吸附特性与吸附机理.结果表明,金属离子在BBMC上的吸附符合Langmuir等温模式和准二级动力学吸附方程;吸附的机理可归结为金属阳离子与BBMC上的H+之间的离子交换作用,且吸附能力可能与金属离子半径有关,呈现出Pb2+Cd2+Cu2+的趋势,重金属离子Pb2+、Cd2+与Cu2+的最大平衡吸附量分别为16.2、14.0和9.5 mg·g-1.  相似文献   

4.
天然斜发沸石粉对溶液中NH4+的吸附机理研究   总被引:10,自引:2,他引:8       下载免费PDF全文
采用天然斜发沸石粉(平均粒径30μm)进行吸附溶液中NH4+的试验研究,并对系统中金属阳离子的液相和固相含量进行了全程跟踪测定.等温吸附试验、吸附动力学研究结果表明,天然斜发沸石对溶液中NH4+的吸附过程符合Freundlich线性模型(R2=0.996),该吸附过程属于优惠吸附;吸附动力学符合假二级方程(R2>0.99),且随着初始NH4+浓度的增加,吸附反应的优惠程度降低.沸石粉对NH4+的吸附过程中离子交换以Ca2+和Na+为主,Na+首先被交换出来,随着吸附过程进行,Ca2+交换量逐渐增加并超过Na+,两者交换当量分别占39%~60%和35%~57%.由于沸石粉粒径较小,其对NH4+的去除除了依靠离子交换作用外,物理吸附作用的贡献不容忽视.  相似文献   

5.
谢德华  施周  陈世洋  谢鹏  宋勇 《环境科学》2010,31(9):2100-2104
基于唐南渗析原理,采用阳离子交换膜去除原水中Cu2+、Mn2+、Zn2+等重金属离子,研究影响阳离子交换膜去除各重金属离子能力大小的机制以及2种重金属离子共存时互相干扰的机制.结果表明,阳离子交换膜可有效去除原水中Cu2+、Mn2+、Zn2+等重金属离子,去除率为75%~85%;在浓度相同下且重金属离子带相同电荷数时,其水化离子半径越小,离子扩散速度就越快,阳离子交换膜对其去除能力就越强;当重金属水化离子半径基本相同时,膜对原子序数小的重金属离子的去除能力更强;相同浓度且相同电荷数的重金属离子共存时,各离子同步被去除,但各离子之间存在干扰,越易于被离子交换的离子与其它离子共存时,其竞争能力越强,使其他离子的去除率降低越多;当待去除离子的总浓度远低于膜的交换容量时,离子共存时各离子的去除率相比离子单独存在时各离子的去除率下降幅度不大.  相似文献   

6.
水体中的As(Ⅲ)和Cd(Ⅱ)重金属离子具有潜在的毒性,且能通过食物链等方式转移富集进入人体,进而威胁人体健康.选用富里酸(FA)作为铁锰镍层状双氢氧化物(FeMnNi-LDH)的修饰物,采用共沉淀法制备出能够同时吸附As(Ⅲ)和Cd(Ⅱ)阴阳离子的稳定层状复合材料(FA@FeMnNi-LDH),主要提升了其对Cd(Ⅱ)的吸附容量.利用XRD、TEM、FT-IR和XPS等技术对其结构进行表征,并探讨其对水体中As(Ⅲ)和Cd(Ⅱ)的吸附去除能力和机制.结果表明,经筛选出的具有结构稳定和最大FA负载率、且达到最优吸附性能的复合材料有层状双氢氧化物的典型特征峰.复合材料对As(Ⅲ)和Cd(Ⅱ)的吸附动力学符合准二级动力学模型,等温吸附曲线符合Langmuir模型,25℃时最大吸附量分别为249.60 mg·g-1和156.50 mg·g-1.该复合材料在pH为2~7和4~7范围内,分别对As(Ⅲ)和Cd(Ⅱ)有较好的吸附效果.水中共存的常见阴离子对As(Ⅲ)的竞争吸附影响大小顺序为:PO43->C...  相似文献   

7.
为有效去除水中Cd(Ⅱ),以TiO2纳米粉和NaOH为原料,调节水热反应温度分别为100、120、150和190℃,制备出了不同形貌的TNs(钛酸盐纳米材料),分别记为TNs-100、TNs-120、TNs-150和TNs-190,并对其形貌、结构、比表面积、化学组成等物理化学性能进行了表征;通过对水中Cd(Ⅱ)的静态吸附试验,考察了TNs对Cd(Ⅱ)的吸附性能.结果表明:随着合成温度的升高,TNs的形貌逐渐从纳米片演变成纳米管,管长逐渐变长,最后变成纳米棒.TNs-100的晶型结构主要是锐钛矿型;随着温度升高,结晶度逐渐增强;TNs-190出现了部分金红石相.TNs-150对Cd(Ⅱ)的吸附能力最强,最大平衡吸附量为254.66 mg/g,最佳吸附pH为5.0.再生的TNs-150对Cd(Ⅱ)循环吸附6次的去除率和解吸率均可达93%以上.TNs-150对Cd(Ⅱ)的吸附过程符合准二阶动力学方程和Langmuir吸附等温模型,吸附机制主要是TNs层间Na+和H+与溶液中Cd(Ⅱ)的离子交换.研究显示,TNs的饱和吸附量均高于同类吸附剂,能有效去除水中Cd(Ⅱ).   相似文献   

8.
以Ti O2(ST-01)和Na OH为原料,采用碱性水热法通过调节反应时间合成不同形貌的钛酸盐纳米材料(TNs),利用XRD、SEM、BET对材料的形貌、结构、比表面积和化学组成等物化性能进行表征,并通过其对水中Pb(Ⅱ)的静态吸附实验,考察材料对Pb(Ⅱ)的吸附性能和吸附规律.结果表明,12~72 h合成的TNs均为纯净的单斜相钛酸盐,比表面积为243.05~286.20 m2·g-1;12~36 h合成的TNs主要为片状结构,48 h以上的TNs为线状结构.TNs-12、TNs-24、TNs-36、TNs-48、TNs-60和TNs-72对Pb(Ⅱ)的吸附量分别为479.40、504.12、482.00、388.10、364.60和399.00 mg·g-1,片状的TNs对Pb(Ⅱ)具有比线状更高的吸附能力,其中以TNs-24对Pb(Ⅱ)的吸附量最高.TNs-24对Pb(Ⅱ)的吸附结果符合准二级动力学模型和Langmuir模型,吸附平衡时间为120 min;TNs对Pb(Ⅱ)的吸附为放热过程,低温或室温便有较高的吸附量;最佳吸附p H为5.0;当p H为1.0时,TNs-24的解析率可达到99.00%;再生的TNs对Pb(Ⅱ)循环吸附6次的去除率仍可达到97%以上,可见TNs可很好地去除水中重金属Pb(Ⅱ).因此,最佳合成时间可控制在12~24 h;当溶液中存在共存Cd(Ⅱ)或Ni(Ⅱ)时,TNs-24对Pb(Ⅱ)的平衡吸附量及去除率均有所下降;吸附机制主要是Pb(Ⅱ)与TNs层间的H+和Na+发生离子交换作用.  相似文献   

9.
通过悬浮粒子浸涂法将合成的γ-Al_2O_3纳米粒子固载于316L多孔不锈钢表面以吸附水溶液中的Cr(Ⅵ)和Cd(Ⅱ).扫描电镜(SEM)和X射线衍射(XRD)测试结果表明,γ相的Al_2O_3纳米粒子均匀地涂在了316L多孔不锈钢基体上,膜体表面沉积厚度约为20μm.该膜对单一Cr(Ⅵ)和Cd(Ⅱ)吸附的最佳pH分别为3.0~4.0和8.0~9.0,吸附均符合动力学准二级模型和Langmuir吸附等温模型,最大吸附量分别为0.603mg·g~(-1)和0.399 mg·g~(-1).本研究可为水体中的高毒性重金属Cr(Ⅵ)和Cd(Ⅱ)去除提供一定的理论和技术参考.  相似文献   

10.
以高锰酸钾改性商业椰壳生物炭(MCBC)为吸附剂,探讨了它对Cd(Ⅱ)和Ni(Ⅱ)的去除性能及机制.当初始pH和MCBC投加量分别为5和3.0 g·L-1时,Cd(Ⅱ)和Ni(Ⅱ)的去除率均高于99%.Cd(Ⅱ)和Ni(Ⅱ)的去除更符合准二级动力学模型,表明它们的去除以化学吸附为主;Cd(Ⅱ)和Ni(Ⅱ)去除的控速步骤为快速去除阶段,而该阶段的速率取决于液膜扩散和颗粒内扩散(表面扩散).Cd(Ⅱ)和Ni(Ⅱ)主要通过表面吸附和孔隙填充附着在MCBC上,表面吸附的贡献更大;MCBC对Cd(Ⅱ)和Ni(Ⅱ)的饱和吸附量分别为57.18 mg·g-1和23.29 mg·g-1,约为前驱体(椰壳生物炭)的5.74倍和6.97倍.Cd(Ⅱ)和Ni(Ⅱ)的去除是自发的、吸热的,具有较为明显的化学吸附热力学特征.Cd(Ⅱ)通过离子交换、共沉淀、络合反应和阳离子-π相互作用附着在MCBC上;而Ni(Ⅱ)则是通过离子交换、共沉淀、络合反应和氧化还原反应被MCBC去除;其中,共沉淀和络合作用是Cd(Ⅱ)和Ni(Ⅱ)表面吸附的主要方式,且络合...  相似文献   

11.
为了促进污水处理厂剩余污泥的资源化利用,探索S-HA(sludge-based humic acid, 污泥腐殖酸)对溶液中重金属Cd2+的吸附特性.采用国际腐殖酸协会(IHSS)推荐的方法提取S-HA,通过元素分析、FT-IR(傅里叶红外光谱分析)和SEM-EDS(外观形态分析)等方法,考察溶液pH和共存阳离子对吸附过程的影响,并对吸附过程分别进行了吸附动力学模型、等温吸附模型和吸附热力学模型拟合,同时通过对比S-HA吸附前后的红外光谱和扫描电镜-能谱图片,探索S-HA对Cd2+的吸附机制.结果表明:①S-HA表面呈松散的簇团状,含有大量的羧基、醇羟基和酚羟基等含氧官能团,芳香度较高,含有较多的脂肪链结构;S-HA在吸附水中Cd2+的过程中,Cd2+与S-HA表面上的酚羟基、羧基等官能团发生了络合作用.②S-HA对Cd2+的吸附量随溶液pH升高而增加,溶液中Na+、NH4+和Ca2+等共存阳离子的存在不利于S-HA对Cd2+的吸附,其中Ca2+的存在对S-HA吸附Cd2+影响最大.③S-HA对Cd2+的吸附由快吸附、慢吸附和吸附平衡3个阶段组成,吸附平衡时间为12 h;吸附过程符合准二级动力学模型,其整体吸附速度由液膜扩散和颗粒内扩散共同控制;吸附等温线符合Freundlich等温吸附模型,25℃下的最大吸附量为19.29 mg/g,Cd2+在S-HA上的吸附是自发吸热反应.研究显示:污水处理厂剩余污泥提取的S-HA对Cd2+具有较好的吸附效果;S-HA对Cd2+的吸附过程同时存在着物理吸附和化学吸附;高pH对S-HA吸附Cd2+有促进作用,而高离子强度对S-HA吸附Cd2+有抑制作用.   相似文献   

12.
电炉钢渣对水中Cu2+、Cd2+和Pb2+的去除作用   总被引:3,自引:0,他引:3  
陈晓  侯文华  汪群慧 《环境科学》2009,30(10):2940-2945
以宝钢电炉钢渣为研究对象,考察了钢渣对溶液中重金属离子Cu2+、Cd2+、Pb2+的吸附动力学、吸附等温线、吸附热力学特征,借助多种分析手段(XRD、BET比表面分析、SEM/EDS等)对钢渣进行了理化性能测试和表征.结果表明,电炉钢渣对重金属离子的吸附速率较快,吸附速率顺序为Cd2+>Pb2+>Cu2+,吸附过程符合一级动力学模型(R2>0.99).吸附等温实验结果表明,Langmuir模型较为适合重金属离子在钢渣上的吸附,实验条件下对Cu2+、Cd2+、Pb2+离子的最大吸附容量分别为0.101、0.058、0.120 mmol.g-1.3种重金属离子在钢渣上的吸附是一个吸热(ΔH0<0)、熵值增大(ΔS0>0)的自发反应过程(ΔG0<0),熵效应是吸附反应自发进行的主要驱动力.SEM/EDS分析结果揭示了吸附前后钢渣表面形貌和化学成分的变化.电炉钢渣以其低价、高效性在重金属废水处理中具有广阔的应用前景.  相似文献   

13.
通过水热反应制备的层状金属硫属化物K1.9Mn0.95Sn2.02S6(KMS),对水中Zn2+具有良好的吸附性能.采用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)和能谱仪(EDS)等手段表征了KMS吸附前后的结构、化学组成和微观形貌.Zn2+与K+发生离子交换后,会与硫产生共价键作用而被吸附,材料的层间距由0.851 nm变为1.123 nm.化学吸附导致吸附后的KMS表面会变得粗糙.考察了p H、反应时间、初始浓度、反应温度和共存离子等因素对KMS吸附Zn2+的影响.在p H=3~6之间,溶液的p H对吸附量没有明显影响.在不同温度下,动力学数据符合准二级动力学模型,而且速率控制步骤主要由液膜扩散控制.吸附过程的活化能为40.24 k J·mol-1.在10℃、25℃和40℃下,KMS对Zn2+的最大吸附量分别是:111.67 mg·g-1、142.91 mg·g-1和161.02 mg·g-1.Langmuir等温吸附模型可以用来描述吸附平衡过程.碱金属和碱土金属离子对Zn2+去除率的影响较小,影响顺序是Ca2+Mg2+Na+,而重金属离子对Zn2+的去除影响较大,影响顺序是Cd2+Pb2+Cu2+Ni2+.离子交换后的KMS不会再释放出Zn2+,可以作为一种永久储存重金属的废弃物.  相似文献   

14.
通过静态摇床试验研究了天然斜发沸石对氨氮的吸附特性,以及沸石投加量和外加金属阳离子对其快速吸附氨氮特性的影响。结果表明,沸石对氨氮的等温吸附过程更符合Langmuir吸附模型,其最大吸附量为12.903mgg;沸石粒径减小,有利于沸石对氨氮的交换吸附,不同粒径沸石对氨氮的吸附均符合准二级动力学过程;斜发沸石中与氨氮进行离子交换的阳离子主要为Na+,其次为Ca2+,随着吸附氨氮浓度的升高或吸附时间的延长,Na+与NH4+吸附去除量的比值呈下降趋势,而Ca2+的比值呈上升趋势。沸石投加量与氨氮去除率和沸石释放至水中的总金属阳离子浓度成正比,随着投加量增加Na+与NH4+吸附去除量的比值由1.222增至1.383;溶液中分别加入40mgL的K+,Na+,Ca2+,Mg2+4种离子,对沸石吸附氨氮产生抑制作用的强弱顺序为K+Ca2+Na+Mg2+。  相似文献   

15.
以纳米二氧化硅为硅源制备硅改性生物炭,利用吸附动力学、吸附等温线及SEM-EDS、XRD、FTIR、XPS等表征研究硅改性生物炭对水中Cd(Ⅱ)的吸附机理,并定量分析各种吸附机制的贡献率.结果表明,当添加SiO2质量比为0.5%时制备的生物炭(0.5SiBC)吸附Cd(Ⅱ)效果最佳,最大吸附量为132.64 mg·g-1,是未改性生物炭(BC)的1.56倍;0.5SiBC对Cd(Ⅱ)吸附过程符合拟二级动力学和Freundlich模型,其吸附过程属于化学吸附;XRD、FTIR和XPS等结果表明,0.5SiBC吸附Cd(Ⅱ)的机理主要有矿物质沉淀、离子交换作用和络合作用,各种机理贡献率依次为:矿物质沉淀(46.61%)>离子交换(33.79%)>其他机理(18.36%)>络合作用(1.24%);0.5SiBC对Cd(Ⅱ)的离子交换和矿物质沉淀量比BC分别提高133.80%和41.46%,硅改性主要通过提高生物炭的离子交换和矿物质沉淀能力来提高吸附Cd(Ⅱ)的能力.研究表明,硅改性生物炭作为去除水溶液中Cd(Ⅱ)的吸附剂具有较好的...  相似文献   

16.
改性甘蔗渣对Pb~(2+)、Cd~(2+)的吸附行为研究   总被引:1,自引:0,他引:1  
为提高废弃甘蔗渣对重金属离子Cd2+和Pb2+的吸附能力,文章采用简单的方法制备了乙二胺四乙酸二酐(EDTAD)修饰的甘蔗渣。经FTIR分析,有大量的羰基修饰在了甘蔗渣的表面,为其吸附重金属离子提供了更多的活性位点。实验结果表明:经过修饰后的甘蔗渣对Cd2+和Pb2+的吸附量分别为46.46 mg/g、119.36 mg/g,是未修饰的3.69和12.31倍,且均能在20 min内达到最大吸附量并保持平衡,其吸附符合Langmuir等温吸附模型,且吸附过程遵循二级动力学模型。在pH 4~7范围内,修饰SCB对Cd2+和Pb2+具有较高的吸附能力。除此之外,在Cd2+、Pb2+、Cu2+和Zn2+共存的情况下,修饰SCB对Pb2+仍能保持较高的吸附量。修饰后的甘蔗渣对Cd2+和Pb2+的吸附能力有了显著提高,且具有一定的抗干扰能力,有望应用于实际工业废水处理。  相似文献   

17.
采用还原-共沉淀法制备了无定型纳米复合Fe-Ti氧化物(FFT)吸附剂,并研究其对水中低浓度As(Ⅴ)的去除性能.XRD表征结果表明,制备的纳米FFT物相为无定型,BET比表面积达325.3 m2·g-1,计算得到的BJH吸附平均孔径为2.46 nm(4V/A),颗粒分布均匀.同时,考察了纳米FFT吸附As(Ⅴ)的动力学、热力学、吸附等温线,以及温度、水中共存离子对其去除As(Ⅴ)的影响.结果发现,纳米FFT对As(Ⅴ)的吸附符合拟二级动力学模型,计算出的孔道扩散系数DP在10-11~10-13cm2·s-1之间,显示孔扩散是速率限速步骤.Langmuir、Freundlich和DubininRadushkevich(D-R)吸附等温式均可较好地拟合吸附行为,低浓度下Langmuir吸附模型计算出的Qm达到26.46 mg·g-1.最后,研究了地下水中常见的共存离子对吸附的影响,发现Ca2+、Mg2+能够促进吸附,H2PO-4和HCO-3则明显抑制吸附过程.  相似文献   

18.
采用SEM、FTIR、XRD、BET等技术对静电纺丝制得的吸附材料壳聚糖/聚乙烯醇(CS/PVA)纳米纤维膜进行表征,并通过对模拟重金属离子废水的吸附实验,系统考察了溶液pH、重金属离子(Cu2+、Ni2+及Cd2+)初始浓度和反应温度对吸附的影响.结果表明,在外加电压25kV、接触距离15.0 cm、纺丝速度0.15 m L·h-1的条件下,可制得CS/PVA质量比为20/80的连续无缺陷的平均直径76.31 nm、比表面积219.4m2·g-1的纤维膜.CS/PVA纳米纤维膜对重金属离子的吸附在2 h内达到平衡,其吸附容量随着温度的升高而升高,随着初始浓度的增大而增大,随着pH值的升高而提高,在pH=5.5时达到最大.在25℃和pH=5.5的条件下,用CS/PVA纳米纤维膜吸附浓度100 mg·L-1的Cu2+、Ni2+和Cd2+溶液,吸附容量分别为98.65、116.89和124.23 mg·g-1,且对重金属吸附无选择性.吸附过程符合Langmuir和Freundlich等温吸附模型,吸附动力学同时匹配准一级动力学模型和准二级动力学模型.热力学参数(ΔG、ΔH和ΔS)计算结果表明,CS/PVA纳米纤维膜对重金属离子的吸附是自发的吸热反应.  相似文献   

19.
为明确纳米伊/蒙黏土(下称伊/蒙黏土)作为修复材料在去除水体重金属方面的应用潜力,研究了伊/蒙黏土对水体中Ni2+、Cu2+和Cd2+的去除效果与吸附规律,并通过小麦水培试验分析伊/蒙黏土降低水体重金属在小麦地上部分的累积和缓解重金属对小麦的毒害效应等效果. 结果表明:伊/蒙黏土可以吸附去除水体中的Ni2+、Cu2+和Cd2+,当水体中ρ(Ni2+)、ρ(Cu2+)和ρ(Cd2+)分别为5、10、2 mg/L时,添加2%(以w计)的伊/蒙黏土对3种重金属的去除率均达到95%以上. 伊/蒙黏土对重金属的吸附等温线符合Langmuir方程,对Ni2+、Cu2+和Cd2+的理论最大吸附量分别为2.13、8.52和1.56 mg/g. 在培养液中添加2%伊/蒙黏土可降低小麦对Ni2+、Cu2+和Cd2+的累积富集,缓解重金属对小麦生长的毒害效应. 研究显示,纳米伊/蒙黏土可有效去除水体中的Ni2+、Cu2+和Cd2+,并缓解其对小麦的毒性,因此其在修复水体重金属污染、恢复水环境生态功能方面具有潜在的应用前景.   相似文献   

20.
文章以宝钢钢渣和首钢钢渣为吸附剂,通过吸附实验考察了溶液中腐殖酸的存在对钢渣吸附重金属离子Cu2+、Cd2+、Pb2+的影响。研究结果表明钢渣可以同时吸附去除溶液中的腐植酸和重金属离子。腐殖酸的存在可以明显的促进钢渣对重金属离子的吸附。腐殖酸浓度为30 mg/L时,可使宝钢钢渣对Cu2+、Pb2+和Cd2+的理论吸附量分别增大61%、58%和33%;使首钢钢渣对Cu2+和Pb2+的理论吸附量分别增大40%、48%和11%。而重金属离子的存在会抑制腐殖酸在钢渣上的吸附。腐植酸通过在钢渣表面形成"吸附位点—腐植酸—重金属"的结构,来促进钢渣对重金属的吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号