首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以高岭土为研究对象,采用静态吸附的实验方法,探讨了吸附时间、铀(Ⅵ)的初始浓度、吸附剂质量、pH值、离子种类、腐殖酸质量等因素对铀(Ⅵ)吸附的影响。结果表明:高岭土对铀(Ⅵ)的吸附性能较好,在6 h时就达到了平衡,最佳铀(Ⅵ)的初始浓度为60μg?m L~(-1);最佳的吸附剂质量为0.01 g;随着pH值的增大,高岭土对铀(Ⅵ)的吸附效果先增大,后减小,pH=5时,吸附效果最大;溶液中K~+、NO_3~-、Na~+和SO_4~(2-)对铀(Ⅵ)的吸附影响较小,Mg~(2+)、CO_3~(2-)和HCO_3~-对铀(Ⅵ)的吸附有抑制效果,不利于吸附;溶液中腐殖酸质量的增加会抑制高岭土对铀(Ⅵ)的吸附。实验结果同时表明:准二级动力学模型较准一级动力学模型能更好地描述U(Ⅵ)在高岭土上的吸附。  相似文献   

2.
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343K温度时吸附量达201.6mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303K,溶液中初始铀浓度为500mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

3.
以伊利石和高岭石为吸附剂,通过静态吸附法研究了其对U(Ⅵ)的吸附特性。考察了接触时间、初始浓度、吸附剂质量、pH、温度、离子种类、腐殖酸等对其吸附效果的影响;采用红外光谱(FTIR) 对伊利石和高岭石的结构进行了表征。研究结果表明:伊利石和高岭石对U(Ⅵ)具有很强的吸附能力,在10 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.04 g、pH=5的条件下,伊利石对U(Ⅵ)的吸附效果最好;在12 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.01 g、pH=5的条件下,高岭石对U(Ⅵ)的吸附效果最好;随着温度的升高,伊利石和高岭石对U(Ⅵ)的吸附能力不断增强,尤其是伊利石;溶液中Mg2+、CO2-3、HCO-3显著降低了伊利石和高岭石对U(Ⅵ)的吸附效果;随着腐殖酸浓度的增加,伊利石对U(Ⅵ)的吸附能力提高,高岭石对U(Ⅵ)的吸附能力降低。  相似文献   

4.
韩磊  马福秋  薛云  矫彩山 《同位素》2019,32(1):13-21
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343 K温度时吸附量达201.6 mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303 K,溶液中初始铀浓度为500 mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

5.
以高庙子膨润土为研究对象,通过静态吸附实验,考查了高庙子膨润土对U(Ⅵ)的吸附特征,研究了接触时间、固液比、铀的初始浓度、pH、离子类型和离子浓度等因素对U(Ⅵ)吸附特征的影响,并讨论了膨润土对U(Ⅵ)的吸附动力学和热力学过程。结果表明:吸附过程在24 h后达到动态平衡;最佳吸附固液比为1:300;最佳吸附初始浓度为40 mg·L~(-1);在pH为5时,膨润土对U(Ⅵ)的吸附效果最好,过酸或过碱都会影响膨润土对U(Ⅵ)的吸附;溶液中Ca~(2+)、CO_3~(2-)显著降低了膨润土对U(Ⅵ)的吸附效果,影响程度随着离子浓度的增加而增大;Freundlich等温吸附模型和准二级动力学模型对吸附过程的拟合效果较好,主要表现为多层吸附。  相似文献   

6.
黄钾铁矾的制备及其对U(Ⅵ)的吸附   总被引:1,自引:0,他引:1  
为了研究黄钾铁矾对溶液中U(Ⅵ)的吸附效果,采用一步水热法制备了黄钾铁矾,并利用X射线衍射(XRD)、拉曼光谱(Raman spectrum)、红外光谱(FTIR)和扫描电子显微镜(SEM)等技术表征了材料的理化特性。利用静态吸附实验研究了溶液pH值、离子强度、固液比和U(Ⅵ)初始浓度对吸附过程的影响。结果表明:溶液pH对于U(Ⅵ)的吸附产生较大的影响, 而离子强度则对吸附过程没有影响, 表明黄钾铁矾对U(Ⅵ)的吸附机理为内层表面络合。吸附在100 min内基本达平衡,且符合准二级动力学模型。吸附等温线符合Langmuir等温模型,表明U(Ⅵ)的吸附是单层吸附。在溶液的pH=7.0、298 K时,黄钾铁矾对U(Ⅵ)的最大吸附量为154 mg/g。最佳吸附条件为:固液比1.0 g/L、U(Ⅵ)初始浓度为0.42 mmol/L、298 K、pH=7.0,达到平衡时的吸附量为(76.0±1.4) mg/g(n=3),去除率达到了(88.0±1.3)%(n=3)。以上结果表明,黄钾铁矾可以作为含U(Ⅵ)废水处理的潜在吸附材料。  相似文献   

7.
以阿拉善粘土岩胶体为吸附介质,采用静态吸附的方法,探讨了不同铀初始浓度、pH、离子种类对粘土岩胶体吸附U(Ⅵ)行为的影响。实验结果表明:U(Ⅵ)的初始浓度为3μg·mL~(-1)时,达到最佳吸附效果;吸附分配系数随pH的增加呈现先增加后降低的趋势,且在pH=8时达到最佳吸附效果;阴、阳离子对U(Ⅵ)在粘土岩胶体中的吸附有一定的抑制作用,其中Ca~(2+)、HCO_3~-、CO_3~(2-)抑制作用较强。U(Ⅵ)在粘土岩胶体中的吸附等温线符合Freundlich等温方程;吸附前后红外光谱表明,与吸附相关的主要基团为羟基。  相似文献   

8.
电纺丝法制备功能化聚丙烯腈纳米纤维及其对U(Ⅵ)的吸附   总被引:1,自引:0,他引:1  
本工作旨在合成对U(Ⅵ)具有高吸附容量与高选择性,且经济环保的功能化纳米纤维材料。首先采用静电纺丝法制备了偕胺肟基聚丙烯腈纳米纤维材料(AO-PAN)和羧基/偕胺肟基聚丙烯腈纳米纤维材料(AC-PAN),并通过不同手段对其进行表征。然后研究了pH、离子强度、接触时间、U(Ⅵ)初始浓度、温度和共存离子对U(Ⅵ)在合成材料上吸附的影响,同时研究了AO-PAN和AC-PAN的重复使用性。结果表明:AO-PAN和AC-PAN对U(Ⅵ)的吸附受pH的影响显著,但受离子强度的影响不大;AC-PAN对U(Ⅵ)吸附达到平衡只需30 min,其最大吸附容量为3.33 mmol/g,约为AO-PAN的8倍;温度的升高有利于U(Ⅵ)的吸附,说明吸附过程是吸热反应;AO-PAN和AC-PAN对U(Ⅵ)具有良好的吸附选择性,且重复利用3次后对U(Ⅵ)的吸附率依然超过99%。因此,AO-PAN 和AC-PAN在处理含铀废水方面有很好的应用前景。  相似文献   

9.
通过静态吸附实验,以稻秆为吸附剂、含U(Ⅵ)溶液为吸附质,研究了吸附剂改性方法、吸附剂用量、溶液pH值、吸附温度等因素对稻秆吸附U(Ⅵ)效果的影响,探讨了改性稻秆吸附U(Ⅵ)的热力学、动力学性质。实验结果表明,用0.5mol/L NaOH能够对稻秆进行有效改性,在吸附pH=4.0、吸附时间为180min、改性稻秆投加量为5~8g/L、室温条件下,改性稻秆吸附U(Ⅵ)可达到较好吸附效果,U(Ⅵ)去除率达到99.72%;但随着铀初始质量浓度的增加,U(Ⅵ)去除率降低。改性稻秆吸附U(Ⅵ)的热力学过程遵循Langmuir等温吸附方程,相关系数r2=0.989 9;改性稻秆吸附U(Ⅵ)的动力学过程符合准二级动力学方程,相关系数r2达到0.999 2。  相似文献   

10.
以伊利石为吸附剂,通过吸附实验探究U(Ⅵ)在伊利石上的吸附特征,分别考查了接触时间、吸附剂用量、U(Ⅵ)初始浓度、pH值及温度对吸附的影响。用FT-IR和SEM对吸附前后的伊利石进行表征,研究了U(Ⅵ)在伊利石上吸附的动力学和热力学过程。结果表明:吸附过程在10 h后达到动态平衡;在U(Ⅵ)初始浓度为50 mg/L时,吸附效果最好;最佳吸附剂用量为0.03 g;pH值对伊利石吸附铀的影响显著,最佳pH值为5~6;升高温度有利于U(Ⅵ)在伊利石上的吸附;准二级动力学模型和Langmuir等温吸附模型对U(Ⅵ)在伊利石上的吸附过程拟合效果较好,吸附过程主要为表面络合作用,属于单层吸附。  相似文献   

11.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu~(2+)对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

12.
为了解铀在北山地下水的存在种态和吸附行为,利用CHEMSPEC软件计算了铀在北山地下水的种态分布及其在石英和水合氧化铁两种材料上的吸附,并考察了pH、Eh和不同离子浓度的变化对铀种态分布的影响。结果显示:在酸性条件下,铀主要以U(OH)_4(aq)形式存在;在中性和弱碱性条件下,主要以UO_2(CO_3)_2~(2-)和UO_2(CO_3)_3~(4-)形式存在;在强碱性条件下,主要以UO2(OH)_3~-形式存在。U的价态受电位影响较大,在还原条件下,U(Ⅳ)较稳定,在氧化条件下,U(Ⅵ)较稳定。不同离子的引入会影响U的种态分布,其影响大小顺序为HCO_3~-F~-SO_4~(2-)Cl~-。U(Ⅵ)在石英上的吸附随pH同步增大,并在pH=4.3处达到最大值,U(Ⅵ)在水合氧化铁的吸附随pH增大而先增大后减小,pH在5.7~8.2内达到最大值。  相似文献   

13.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu2+对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

14.
以三聚氰胺为原料、碳酸钙为辅助模板,采用热聚合法对石墨相氮化碳(g-C3N4)进行改性,制备了多孔石墨相氮化碳(PCN)材料,研究了g-C3N4改性前后对U(Ⅵ)的吸附效果,并利用SEM、BET、FT-IR、XPS等表征手段对PCN吸附U(Ⅵ)的机理进行了分析。结果表明:PCN比表面积显著增大(58.5 m2/g),约为g-C3N4的4倍;在初始pH=5、吸附时间2 h、U(Ⅵ)初始浓度10 mg/L、PCN用量0.2 g/L、温度303 K条件下,PCN对U(Ⅵ)的最大吸附量为92 mg/g;整个吸附过程符合准二级动力学方程以及Langmuir等温吸附模型;此外,升高温度有利于PCN对U(Ⅵ)的吸附。FT-IR、XPS表征结果表明,PCN中的含氮基团参与了PCN对U(Ⅵ)的吸附去除。  相似文献   

15.
U(Ⅵ)在Na-凹凸棒石黏土上的吸附   总被引:1,自引:0,他引:1  
采用批式法研究了U(Ⅵ)在Na-凹凸棒石黏土上的吸附行为,结果表明,U(Ⅵ)在Na-凹凸棒石黏土上的吸附动力学速度快,且符合假二级动力学方程。探讨了吸附接触时间、离子强度、pH值、富里酸(FA)及温度等因素对吸附的影响。结果发现:在pH<5.5时,随NaCl浓度的增大,U(Ⅵ)在Na-凹凸棒石黏土上的吸附率减小,pH>8.0时,随NaCl浓度的增大,U(Ⅵ)的吸附率反而增大;在pH<6.0时,吸附率随pH值增大而增大,pH>8.0时,吸附率随pH值的增大而减小;在高pH值下,U(Ⅵ)在Na-凹凸棒石黏土上的吸附机理可能主要是表面配合作用,而在低pH值下,其吸附机理可能主要是离子交换作用;高温有利于U(Ⅵ)在Na-凹凸棒石黏土上的吸附,且该吸附是吸热的、自发的过程;FA对吸附有明显的促进作用。  相似文献   

16.
以伊利石为吸附剂,通过吸附实验探究U(Ⅵ)在伊利石上的吸附特征,分别考查了接触时间、吸附剂用量、U(Ⅵ)初始浓度、pH值及温度对吸附的影响。用FT-IR和SEM对吸附前后的伊利石进行表征,研究了U(Ⅵ)在伊利石上吸附的动力学和热力学过程。结果表明:吸附过程在10 h后达到动态平衡;在U(Ⅵ)初始浓度为50 mg/L时,吸附效果最好;最佳吸附剂用量为0.03 g;pH值对伊利石吸附铀的影响显著,最佳pH值为5~6;升高温度有利于U(Ⅵ)在伊利石上的吸附;准二级动力学模型和Langmuir等温吸附模型对U(Ⅵ)在伊利石上的吸附过程拟合效果较好,吸附过程主要为表面络合作用,属于单层吸附。  相似文献   

17.
为了探究磷酸三钙对U(Ⅵ)的吸附性能与机理,以碳酸钙和磷酸氢二铵为原料,采用固相法合成磷酸三钙粉末,并利用X射线衍射仪(XRD)、傅里叶转换红外光谱仪(FTIR)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对其理化特性进行表征。研究pH、固液比、吸附时间、U(Ⅵ)初始浓度、吸附温度等因素对磷酸三钙去除U(Ⅵ)性能的影响。采用动力学吸附、等温吸附、热力学吸附等模型及XRD、FTIR、X射线光电子能谱(XPS)、SEM、能谱仪(EDS)、电感耦合等离子体发射光谱仪(ICP-OES)等表征手段揭示磷酸三钙去除U(Ⅵ)的机理。结果表明:在pH=3.0、固液比0.1 g/L、吸附时间60 min、U(Ⅵ)初始质量浓度120 mg/L、吸附温度308 K的条件下,磷酸三钙对U(Ⅵ)的平衡吸附容量达到999.25 mg/g。该吸附过程符合准二级动力学模型(化学吸附)和Langmuir模型(单层吸附),且为自发吸热过程。磷酸三钙对U(Ⅵ)的去除机理为溶解和沉淀过程:在酸性水溶液中,磷酸三钙溶解出的Ca^(2+)和PO^(3-)_(4)与UO_(2)^(2+)发生沉淀反应,在磷酸三钙表面生成准钙铀云母(Ca(UO_(2))_(2)(PO_(4))_(2)·6H 2O)。以上结果表明:磷酸三钙可作为一种有应用前景的用于处理含U(Ⅵ)废水的吸附材料。  相似文献   

18.
土壤腐殖酸的提取及其对U(Ⅵ)的吸附   总被引:4,自引:1,他引:4  
用稀碱法从拟作为核废物填埋场的土壤中提取腐殖酸并用元素分析和红外光谱进行表征。用此腐殖酸对U(Ⅵ)进行的吸附实验结果表明:当U(Ⅵ)初始总浓度为0.84×10-4mol/L、溶液pH为3时,5mg腐殖酸可从20mL溶液中吸附U(Ⅵ)80%以上;两相接触8h后达到动态平衡;水相U(Ⅵ)浓度与吸附量之间的关系符合Langmuir经验公式;在0~40℃范围内,温度对吸附有不大的正影响;Al3+、Ca2+、Nd3+、Eu3+、CO2-3、柠檬酸根离子、SO2-4和EDTA等能使该腐殖酸对U(Ⅵ)的吸附率显著降低,而K+、NO-3等对吸附则无明显影响。  相似文献   

19.
利用H_2O_2对活性炭进行活化,得到了良好的吸附材料(15%-AC),用傅立叶红外(Fourier Transform Infrared spectroscopy,FT-IR)、热重分析(Themiogravimetric Analysis,TGA)、扫描电子显微镜(Scanning Electron Microscope,SEM)和Brunauer-Emmett-Teller (BET)孔径分析等方法测定了活化前后样品。结果表明:经过H_2O_2活化后的活性炭,表面氧化基团增加,形成更多吸附位点,比表面积小幅度减少,但介孔量增加,孔隙率上升。采用静态吸附实验研究了接触时间、pH、固液比、初始浓度、温度、共存阴阳离子等因素对吸附的影响。在最佳条件下(接触时间、pH、固液比、初始浓度、温度分别为90 min、5、8 g·L~(-1)、80 mg·L~(-1)、35℃),吸附性能增加了68%;准二级动力学模型和Langmuir等温吸附模型对吸附行为的拟合效果好,表现为表面均匀且为多基元的吸附行为;15%-AC在共存离子和循环吸附的影响下仍具有良好的吸附性能。实验证明:H_2O_2的活化过程可以有效地提高活性炭对U(Ⅵ)的吸附性能。  相似文献   

20.
利用H2O2对蒙脱石进行活化,获得了活化蒙脱石吸附材料(AX-MMT),采用X射线衍射(XRD)、傅里叶红外谱图(FTIR)、透射电镜(TEM)、扫描电镜(SEM)、比表面分析(BET)、表面Zeta电位分析等手段对活化样品进行了表征;采用静态批量实验法,考察了H2O2浓度、pH值、接触时间和共存阴阳离子对U(Ⅵ)在AX-MMT上吸附率的影响。结果表明:活化保留了蒙脱石基础结构,其阳离子交换容量(CEC)有所减少,但层间距、比表面积、孔隙体积、表面酸位点和表面Zeta电位均有明显提升,对溶液中U(Ⅵ)的吸附性能显著增强;在最佳活性和吸附条件下(H2O2质量分数、pH值和接触时间分别为10%、6和24 h),蒙脱石对U(Ⅵ)的吸附性能提升了8.5倍,吸附行为符合准二级吸附动力学模型;在共存阴阳离子的干扰下,H2O2活化蒙脱石能对U(Ⅵ)展现良好的吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号