首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Effect of shape-stabilized phase change material (SSPCM) plates combined with night ventilation in summer is investigated numerically. A building in Beijing without active air-conditioning is considered for analysis, which includes SSPCM plates as inner linings of walls and the ceiling. Unsteady simulation is performed using a verified enthalpy model, with time period covering the summer season. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM, the thickness of SSPCM plate and air change per hour (ACH) at both nighttime and daytime. The results show that the SSPCM plates could decrease the daily maximum temperature by up to 2 °C due to the cool storage at night. The appropriate values for melting temperature, heat of fusion, thermal conductivity and thickness of SSPCM plates need to be considered and calculated according to the climate conditions and building structure. The ACH at night needs to be as high as possible but the ACH at daytime should be controlled.  相似文献   

2.
《Applied Energy》2007,84(10):1068-1077
Performance of a hybrid heating-system, combined with thermal storage using shape-stabilized phase-change material (SSPCM) plates, is investigated numerically. A direct gain passive solar house in Beijing is considered, which includes SSPCM plates as the inner linings of walls and the ceiling. Unsteady simulation is performed using a verified enthalpy model, with a time period covering the winter heating-season. Additional heat supply is employed during load hours at late night and early morning (23:00–07:00 in Beijing) or during the whole day necessary to keep the minimum indoor air temperature above 18 °C. The results indicate the thermal storage effect of SSPCM plates, which improves the indoor thermal comfort level and saves about 47% of normal-and-peak-hour energy use and 12% of total energy consumption in winter in Beijing.  相似文献   

3.
Thermal analysis of a direct-gain room with shape-stabilized PCM plates   总被引:1,自引:0,他引:1  
The thermal performance of a south-facing direct-gain room with shape-stabilized phase change material (SSPCM) plates has been analysed using an enthalpy model. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM (melting temperature, heat of fusion and thermal conductivity), inner surface convective heat transfer coefficient, location and thickness of the SSPCM plate, wall structure (external thermal insulation and wallboard material) etc. The results show that: (1) for the present conditions, the optimal melting temperature is about 20 °C and the heat of fusion should not be less than 90 kJ kg−1; (2) it is the inner surface convection, rather than the internal conduction resistance of SSPCM, that limits the latent thermal storage; (3) the effect of PCM plates located at the inner surface of interior wall is superior to that of exterior wall (the south wall); (4) external thermal insulation of the exterior wall obviously influences the operating effect and period of the SSPCM plates and the indoor temperature in winter; (5) the SSPCM plates create a heavyweight response to lightweight constructions with an increase of the minimum room temperature at night by up to 3 °C for the case studied; (6) the SSPCM plates really absorb and store the solar energy during the daytime and discharge it later and improve the indoor thermal comfort degree at nighttime.  相似文献   

4.
Night ventilation control strategies in office buildings   总被引:1,自引:0,他引:1  
In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factors influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 °C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy.  相似文献   

5.
The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the water tank volume or even cancel the tank, a novel structure of an integrated water pipe floor heating system using shape-stabilized phase change materials (SSPCM) for thermal energy storage was developed and experimentally studied in this paper. The thermal performances of the floors with and without the SSPCM were compared under the intermittent heating condition. The results show that the Energy Storage Ratio (ESR) of the SSPCM floor is much higher than that of the non-SSPCM floor; the SSPCM floor heating system can provide stable heat flux and prevent a large attenuation of the floor surface temperature. Also, the SSPCM floor heating system dampens the indoor temperature swing by about 50% and increases the minimum indoor air temperature by 2°C–3°C under experimental conditions. The SSPCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.  相似文献   

6.
The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the water tank volume or even cancel the tank, a novel structure of an integrated water pipe floor heating system using shapestabilized phase change materials (SSPCM) for thermal energy storage was developed and experimentally studied in this paper. The thermal performances of the floors with and without the SSPCM were compared under the intermittent heating condition. The results show that the Energy Storage Ratio (ESR) of the SSPCM floor is much higher than that of the non-SSPCM floor; the SSPCM floor heating system can provide stable heat flux and prevent a large attenuation of the floor surface temperature. Also, the SSPCM floor heating system dampens the indoor temperature swing by about 50% and increases the minimum indoor air temperature by 2°C–3°C under experimental conditions. The SSPCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.  相似文献   

7.
In office buildings, the use of passive cooling techniques combined with a reduced cooling load may result in a good thermal summer comfort and therefore save cooling energy consumption. This is shown in the low-energy office building ‘SD Worx’ in Kortrijk (Belgium), in which natural night ventilation and an earth-to-air heat exchanger are applied. In winter, the supply air is successively heated by the earth-to-air heat exchanger and the regenerative heat exchanger, which recovers the heat from the exhaust air. In summer, the earth-to-air heat exchanger cools the ventilation air by day. In addition, natural night ventilation cools down the exposed structure which has accumulated the heat of the previous day. In this article the overall thermal comfort in the office building is evaluated by means of measuring and simulation results. Measurements of summer 2002 are discussed and compared to simulations with a coupled thermal and ventilation simulation model TRNSYS-COMIS. The simulations are used to estimate the relative importance of the different techniques. The evaluation shows that passive cooling has an important impact on the thermal summer comfort in the building. Furthermore, natural night ventilation appears to be much more effective than an earth-to-air heat exchanger to improve comfort.  相似文献   

8.
One of the first rehabilitated passive energy standard office buildings in Europe was extensively monitored over two years to analyse the cooling performance of a ground heat exchanger and mechanical night ventilation together with the summer comfort in the building. To increase the storage mass in the light weight top floor, phase change materials (PCM) were used in the ceiling and wall construction. The earth heat exchanger installed at a low depth of 1.2 m has an excellent electrical cooling coefficient of performance of 18, but with an average cooling power of about 1.5 kW does not contribute significantly to cooling load removal. Mechanical night ventilation with 2 air changes also delivered cold at a good coefficient of performance of 6 with 14 kW maximum power. However, the night air exchange was too low to completely discharge the ceilings, so that the PCM material was not effective in a warm period of several days. In the ground floor offices the heat removal through the floor to ground of 2–3 W m−2 K−1 was in the same order of magnitude than the charging heat flux of the ceilings. The number of hours above 26 °C was about 10% of all office hours. The energy performance of the building is excellent with a total primary energy consumption for heating and electricity of 107–115 kW h m−2 a−1, without computing equipment only 40–45 kW h m−2 a−1.  相似文献   

9.
Night ventilation for building cooling in summer   总被引:2,自引:0,他引:2  
This paper presents a two-step analysis of night ventilation as a way of cooling office buildings and providing comfort in summer. Experimental data first allows us to discuss some factors which affect the performance of the technique, to show that significant comfort improvement may be obtained in “well-designed” rooms, and to investigate the energy removal from the building by defining a potential energy efficiency index. Through the use of numerical simulations, we then deal with the useful cooling energy which is offered by night ventilation in the experimental configuration and show that much care has to be taken when the technique is intended to be used in the frame of a mixed-mode cooling system.  相似文献   

10.
This paper investigates the effect that increased air temperature due to the London heat island has on the effectiveness of stack night ventilation strategies for office buildings. Stack ventilation was investigated as the most suitable night ventilation strategy because this is largely independent of wind variations affected by local urban morphology. The paper presents a summary of the results of air temperature measurements carried out in London in 1999/2000 which were used to quantify the London Urban Heat Island Intensity. It then presents data for two representative weeks, one with extreme hot weather and one with typical hot weather in the centre of the London heat island and a rural reference site. These data are used to carry out a parametric analysis by using a thermal and air flow simulation tool specifically designed for offices in SE England. A reference and optimised office module are described. A comparison of the building types based in the same location suggests that during the typical hot week the rural reference office has 84% energy demand for cooling compared to a similar urban office. A rural optimised office would not need any artificial cooling and would be able to maintain temperatures below 24 °C. An urban optimised office would not be able to achieve this. A rural optimised office would need 42% of the cooling required for an optimised urban office. A comparison of the optimised to the reference office module suggests that an urban optimised office reduces the cooling demand to 10% of the urban reference office.  相似文献   

11.
提出了一种与太阳能空气集热器结合的定形相变蓄能地板采暖系统充分利用太阳能.白天,由太阳能空气集热器加热后的热空气通过保温管道输送到相变地板夹层,相变材料(PCM)蓄热;夜间,房间的冷空气进入相变地板夹层,被加热后送入房间,相变材料放热.可行性实验研究表明,此采暖系统安全可靠,能显著提高窒内温度,房间各处受热均匀,热舒适性较好,有一定的应用前景.  相似文献   

12.
Architectural shade is an effective method for improving building energy efficiency. A new shade combined with the double skin façade (DSF) system, called middle shade (MS), was introduced and developed for buildings. In this paper, a 3D dynamic simulation was conducted to analyze the influence of MS combined with DSF on the indoor thermal characteristics. The research on MS for DSF involves the temperature, the ventilation rate, the velocity distribution of the air flow duct, and the indoor temperature. The results show that the angle and position of the shade in the three seasons are different, and different conditions effectively enhance the indoor thermal characteristics. In summer, the appearance of MS in DSF makes the indoor temperature significantly lower. The indoor temperature is obviously lower than that of the air flow duct, and the temperature of the air flow duct is less affected by MS. The influence of the position of blinds on indoor temperature and ventilation rate is greater than the influence of the angle of blinds. According to the climate characteristics of winter and transition season, in winter, early spring, and late autumn, the indoor temperature decreases with the increase of the position of blinds at daytime, but the opposite is true at night. The results found in this paper can provide reference for the design and use of MS combined with DSF in hot summer and cold winter zone.  相似文献   

13.
An office building of unusual design has been monitored for more than three years. Numerous submeters allow tracking of energy end use. The building was designed to make significant use of daylighting, with some passive solar heating, and an emphasis on night ventilation cooling of thermal mass. The overall building end usages are compared to those of three zones of varying orientation, spatial character, size, and population. Insights about daylight-sensing controls of indirect electric lighting, “task heating,” and night ventilation of mass and air quality are presented.  相似文献   

14.
During the hot summer season, using electricity systems increases the local anthropogenic heat emission, further increasing the temperature. Regarding anthropogenic heat sources, electric energy consumption, heat generation, indoor and outdoor heat transfer, and exchange in buildings play a critical role in the change in the urban thermal environment. Therefore, the Weather Research and Forecasting (WRF) Model was applied in this study to investigate the heat generation from an indoor electricity system and its influence on the outdoor thermal environment. Through the building effect parameterization (BEP) of a multistorey urban canopy scheme, a building energy model (BEM) to increase the influence of indoor air conditioning on the electricity consumption system was proposed. In other words, the BEP+BEM urban canopy parameterization scheme was set. High temperatures and a summer heat wave were simulated as the background weather. The results show that using the BEP+BEM parameterization scheme of indoor and outdoor energy exchange in the WRF model can better simulate the air temperature near the surface layer on a sunny summer. During the day, the turning on the air conditioning and other electrical systems have no obvious effect on the air temperature near the surface layer in the city, whereas at night, the air temperature generally increases by 0.6 ℃, especially in densely populated areas, with a maximum temperature rise of approximately 1.2 ℃ from 22:00 to 23:00. When the indoor air conditioning target temperature is adjusted to 25–27 ℃, the total energy release of the air conditioning system is reduced by 12.66%, and the temperature drops the most from 13:00 to 16:00, with an average of approximately 1 ℃. Further, the denser the building is, the greater the temperature drop.  相似文献   

15.
Cooling-energy reduction in air-conditioned offices by using night ventilation   总被引:11,自引:0,他引:11  
Night ventilation has been applied successfully to many passively-cooled or low-energy office buildings. This paper investigates the applicability of night ventilation in air-conditioned office buildings. A thermal and ventilation simulation model, together with suitable weather data were used to examine the potential for energy savings and/or improved internal comfort conditions by applying night ventilation cooling. It was found that natural ventilation strategies could save cooling energy in typical air-conditioned offices. However, the use of mechanical ventilation could lead to increased energy-consumption. If typical offices are modified to incorporate features assisting the application of night ventilation, then cooling energy could be saved when mechanical ventilation is used and further reduced in the case of natural ventilation. Such features would include exposed thermal mass or offices designed to ‘best practice’ guidelines, such as airtight construction and minimisation of internal and solar heat gains.  相似文献   

16.
Terminal boxes maintain room temperature by modulating supply air temperature and airflow in building heating, ventilation and air‐conditioning (HVAC) systems. Terminal boxes with conventional control sequences often supply inadequate airflow to a conditioned space, resulting in occupant discomfort, or provide excessive airflow that wastes significant reheat energy. In this study, the procedure for the optimal minimum airflow setpoint was developed to improve thermal comfort and reduce energy consumption. The determined minimum airflow setpoint was applied in an office building air‐conditioning system. Improvements in indoor thermal comfort and energy reduction were verified through measurement. The results show that the minimum airflow reset can stably maintain room temperature, satisfy comfort standards and reduce energy consumption compared with the conventional control. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The sensitivity of electricity consumption to air temperature and air humidity are effective indicators in evaluating the impacts of countermeasures against urban heat islands. The impacts of these countermeasures vary in time and space and so sensitivities based on finer resolution data are needed. Using actual hourly electric power consumption data from the business districts of Tokyo, we calculated the sensitivity of electric power consumption using multiple regression analysis. The sensitivities appear from 07:00 to 23:00 local standard time (LST) during weekdays during both winter and summer, mainly from 09:00 to 17:00 LST. The sensitivities to air temperature during winter are approximately 0.7–1.1 (W/floor-m2)/°C on an average and those during summer are approximately 1.1–1.4 on an average; the sensitivities to air humidity are approximately 0.6–0.9 on an average. It was found that the sensitivities to air temperature are caused due to heating during winter and cooling during summer; further, the sensitivities to air humidity were caused by dehumidification not for conditioning the air humidity of the room but for the condensation around the air-conditioner's coils with cooling during summer.  相似文献   

18.
The suitability of night ventilation for cooling is first discussed by presenting a plot of summer weather conditions on the bioclimatic chart and by reporting on the results of energy and ventilation simulations of a typical UK office module. The development of a simplified design tool suitable for the early stages of design process is then described. For this model, user input is limited to a few key variables and the technique allows the designer to explore rapidly the effects of a range of design variables including variable external temperatures, internal gains and ventilation rates during the day and night.  相似文献   

19.
This article presents an experimental and numerical analysis of cooling buildings using night‐time cold accumulation in phase change material (PCM), otherwise known as the ‘free‐cooling principle’. Experimental and numerical studies of the ceiling and floor free‐cooling principle, as well as passive cooling, are presented. The free‐cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22°C as the PCM to store cold during the night‐time and to cool hot air during the daytime in summer. Air temperatures and heat fluxes as a function of time and dimensionless cold discharging values are presented for different air velocities. Experimental analysis of one week of measuring under real conditions is presented in order to show how cold storage functions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes an experimental tool elaborated at the building sciences laboratory (LASH/DGCB). The objective of this tool is to develop control strategies for heating, cooling and ventilation, and test them on heating, ventilating and air conditioning equipment. The tests are conducted in a large room of the laboratory equipped with a double-flow ventilation system and a global control/data acquisition system. The tool is used for research and some experiments are led by engineering students. It enables the identification of optimal parameters for each developed control strategy, in order to reach good thermal comfort, acceptable indoor air quality and good stability of actuators at the least energy cost. In this paper we present an example of global control strategy for heating and cooling periods based on interior temperature control (fuzzy regulator). This strategy includes an indoor air quality controller (proportional integral or fuzzy regulator) based on indoor CO2 level control. A measurements campaign during an occupied period is shown with an overview of the actuators’ behaviour. This tool also highlights the key role of advanced control techniques to manage heating, cooling and ventilation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号