首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the transport properties of heterostructures of armchair graphene nanoribbons (AGNR) forming a double symmetrical barrier configuration. The systems are described by a single-band tight-binding Hamiltonian and Green's functions formalism, based on real-space renormalization techniques. We present results for the quantum conductance and the current for distinct configurations, focusing our analysis on the dependence of the transport with geometrical effects such as separation, width and transverse dimension of the barriers. Our results show the apparition of a series of resonant peaks in the conductance, showing a clear evidence of the presence of resonant states in the conductor. Changes in the barrier dimensions allow the modulation of the resonances in the conductance, making possible to obtain a complete suppression of electron transmission for determined values of the Fermi energy. The current–voltage curves show the presence of a negative differential resistance effect with a threshold voltage that can be controlled by varying the separation between the barriers and by modulating its confinement potential.  相似文献   

2.
S. Das Sarma  Kun Yang   《Solid State Communications》2009,149(37-38):1502-1506
We apply Laughlin’s gauge argument to analyze the ν=0 quantum Hall effect observed in graphene when the Fermi energy lies near the Dirac point, and conclude that this necessarily leads to divergent bulk longitudinal resistivity in the zero temperature thermodynamic limit. We further predict that in a Corbino geometry measurement, where edge transport and other mesoscopic effects are unimportant, one should find the longitudinal conductivity vanishing in all graphene samples which have an underlying ν=0 quantized Hall effect. We argue that this ν=0 graphene quantum Hall state is qualitatively similar to the high field insulating phase (also known as the Hall insulator) in the lowest Landau level of ordinary semiconductor two-dimensional electron systems. We establish the necessity of having a high magnetic field and high mobility samples for the observation of the divergent resistivity as arising from the existence of disorder-induced density inhomogeneity at the graphene Dirac point.  相似文献   

3.
We review the effect of uniaxial strain on the low-energy electronic dispersion and Landau level structure of bilayer graphene. Based on the tight-binding approach, we derive a strain-induced term in the low-energy Hamiltonian and show how strain affects the low-energy electronic band structure. Depending on the magnitude and direction of applied strain, we identify three regimes of qualitatively different electronic dispersions. We also show that in a weak magnetic field, sufficient strain results in the filling factor ν=±4 being the most stable in the quantum Hall effect measurement, instead of ν=±8 in unperturbed bilayer at a weak magnetic field. To mention, in one of the strain regimes, the activation gap at ν=±4 is, down to very low fields, weakly dependent on the strength of the magnetic field.  相似文献   

4.
We report a room-temperature scanning tunneling microscopy and spectroscopy study of bilayer graphene prepared by mechanical exfoliation on a SiO2/Si surface and electrically contacted with gold pads using a mechanical mask. The bulk conductivity shows contributions from regions of varying electron density, indicating significant charge inhomogeneity. Large-scale topographic images show ripple-like structures with a roughness of ∼1 nm, while the small-scale atomic resolution images show graphite-like triangular lattices. The local () tunnel spectra have an asymmetric V-shape with the minima location showing significant spatial variation, indicating inhomogeneity in electron density of order 1011 cm−2. The minimum in spectrum at a fixed location also shifts linearly with the gate voltage with a slope consistent with the field-induced carrier density.  相似文献   

5.
Motivated by recent experiments on suspended graphene showing carrier mobilities as high as 200,000 cm2/V s, we theoretically calculate transport properties assuming Coulomb impurities as the dominant scattering mechanism. We argue that the substrate-free experiments done in the diffusive regime are consistent with our theory and verify many of our earlier predictions including (i) removal of the substrate will increase mobility since most of the charged impurities are in the substrate, (ii) the minimum conductivity is not universal, but depends on impurity concentration with cleaner samples having a higher minimum conductivity. We further argue that experiments on suspended graphene put strong constraints on the two parameters involved in our theory, namely, the charged impurity concentration and d, the typical distance of a charged impurity from the graphene sheet. The recent experiments on suspended graphene indicate a residual impurity density of which are presumably stuck to the graphene interface, compared to impurity densities of for graphene on SiO2 substrate. Transport experiments can therefore be used as a spectroscopic tool to identify the properties of the remaining impurities in suspended graphene.  相似文献   

6.
The Hall coefficient RH of n-type CuInSe2 single crystals is measured between 10 and 300 K in pulsed magnetic field up to 35 T. The threshold field Bth, above which the magnetic freezeout starts to occur, varies linearly with temperature. From the analysis of the temperature dependence of electron concentration in the activation regime above 100 K at different field values, it is established that the density of states effective mass is independent of the magnetic field B and the activation energy ED, above around 6 T, varies as B1/3. Similar B1/3 dependence of the magnetoresistance in the high magnetic field regime, reported earlier in the same material, suggests that theoretical work that could explain this coincidence is needed.  相似文献   

7.
A Hall resistivity formula for the 2DES in graphene is derived from the zero-mass Dirac field model adopting the electron reservoir hypothesis. The formula reproduces perfectly the experimental resistivity data [K.S. Novoselov, et al., Nature 438 (2005) 201]. This perfect agreement cannot be achieved by any other existing models. The electron reservoir is shown to be the 2DES itself.  相似文献   

8.
The origin of the singular diamagnetic susceptibility at the Dirac point is probed through the study of effects of band-gap opening and spatially varying magnetic field. In the presence of a band gap, the susceptibility is nonzero only inside the band gap and exhibits a discrete jump at the band edges down to zero in the conduction and valence bands. The jump height is understood in terms of the pseudo-spin paramagnetism arising from valley degree of freedom. In spatially varying magnetic field with wave vector q, the susceptibility becomes nonzero only in a finite energy region containing the Dirac point, determined by q. This behavior is understood in terms of electronic states numerically calculated in periodic magnetic field.  相似文献   

9.
We have investigated gapless edge states in zigzag-edge graphene nanoribbons under a transverse electric field across the opposite edges by using a tight-binding model and the density functional theory calculations. The tight-binding model predicted that a quantum valley Hall effect occurs at the vacuum-nanoribbon interface under a transverse electric field and, in the presence of edge potentials with opposite signs on opposite edges, an additional quantum valley Hall effect occurs under a much lower field. Dangling bonds inevitable at the edges of real nanoribbons, functional groups terminating the edge dangling bonds, and spin polarizations at the edges result in the edge potentials. The density functional theory calculations confirmed that asymmetric edge terminations, such as one having hydrogen at an edge and fluorine at the other edge, lead to the quantum valley Hall effect even in the absence of a transverse electric field. The electric field-induced half-metallicity in the antiferromagnetic phase, which has been intensively investigated in the last decade, was revealed to originate from a half-metallic quantum valley Hall effect.  相似文献   

10.
Using nonequilibrium Green?s functions in combination with the density functional theory, the spin-dependent electronic transport properties on V-shaped notched zigzag-edged graphene nanoribbons junctions have been calculated. The results show that the electronic transport properties are strongly depending on the type of notch and the symmetry of ribbon. The spin-filter phenomenon and negative differential resistance behaviors can be observed. A physical analysis of these results is given.  相似文献   

11.
We propose a new type of quantum pump made out of graphene, adiabatically driven by oscillating voltages applied to two back gates. From a practical point of view, graphene-based quantum pumps present advantages as compared to normal pumps, like enhanced robustness against thermal effects and a wider adiabatic range in driving frequency. From a fundamental point of view, apart from conventional pumping through propagating modes, graphene pumps can tap into evanescent modes, which penetrate deeply into the device as a consequence of chirality. At the Dirac point the evanescent modes dominate pumping and give rise to a universal response under weak driving for short and wide pumps, even though the charge per unit cycle is not quantized.  相似文献   

12.
The size dependent electronic properties of armchair graphene nanoribbons (AGNR) with Ni doped atoms have been investigated using spin-unrestricted density functional theory. We predict antiferromagnetic (AFM) ground states for Ni-termination and one edge Ni-doping. The computed formation energy reveals that one edge Ni-terminated AGNR are energetically more favourable as compared to pristine ribbons. One edge substitutional doping is energetically more favourable as compared to centre doping by ∼1 eV whereas both edge doping is unfavourable. The bond length of substitutional Ni atoms is shorter than that of Ni adsorption in GNR, implying a stronger binding for substitutional Ni atoms. It is evident that binding energy is also affected by the coordination number of the foreign atom. The results show that Ni-interaction perturbs the electronic structure of the ribbons significantly, causing enhanced metallicity for all configurations irrespective of doping site. The band structures reveal the separation of spin up and down electronic states indicating towards the existence of spin polarized current in Ni-terminated and one edge doped ribbons. Our calculation predicts that AGNR containing Ni impurities can play an important role for the fabrication of spin filters and spintronic devices.  相似文献   

13.
孙庆丰  谢心澄 《物理》2010,39(06):416-418
文章作者在垂直磁场作用下的铁磁石墨烯体系里预言了一种新类型的量子自旋霍尔效应.这量子自旋霍尔效应与自旋轨道耦合无关,体系也不具有时间反演不变性;但是有CT不变(C为电子-空穴变换、T为时间反演变换).由于量子自旋霍尔效应,体系的纵向电阻和自旋霍尔阻出现量子化平台.特别是,自旋霍尔阻的量子化平台有很强的抗杂质干扰能力.  相似文献   

14.
文章作者在垂直磁场作用下的铁磁石墨烯体系里预言了一种新类型的量子自旋霍尔效应.这量子自旋霍尔效应与自旋轨道耦合无关,体系也不具有时间反演不变性;但是有CT不变(C为电子-空穴变换、T为时间反演变换).由于量子自旋霍尔效应,体系的纵向电阻和自旋霍尔阻出现量子化平台.特别是,自旋霍尔阻的量子化平台有很强的抗杂质干扰能力.  相似文献   

15.
We have shown that the non-Abelian spin-orbit gauge field strength of the Rashba and Dresselhaus interactions, when split into two Abelian field strengths, the Hamiltonian of the system can be re-expressed as a Landau level problem with a particular relation between the two coupling parameters. The quantum levels are created with up and down spins with opposite chirality and leads to the quantum spin Hall effect.  相似文献   

16.
The electronic states, charge dynamics, and spin dynamics in the antiferromagnetic metallic phase of iron-arsenide superconductors are investigated by mean-field calculations for a five-band Hubbard model. Taking into account the difference of observed magnetic moments between LaFeAsO (1111 system) and BaFe2As2 (122 system), we investigate the effect of the magnitude of the moments on band dispersion, optical conductivity, and dynamical spin susceptibility. We clarify how the magnitude affects on these quantities and predict different behaviors between the 1111 and 122 systems in the antiferromagnetic metallic phase.  相似文献   

17.
A semi-analytical model for the capacitance–voltage characteristics of graphene nanoribbon field-effect transistors (GNR-FETs), in the quantum capacitance limit, is presented. The model incorporates the presence of electron–hole puddles induced by local potential fluctuations assuming a Gaussian distribution associated with these puddles. Our numerical results show that the multi-peaks in the non-monotonic quantum capacitance–voltage characteristics are broadened as the potential fluctuation strength increases and the broadening effect is much more pronounced in wide GNRs. The influence of both gate-insulator thickness and dielectric constant scaling on the total gate-capacitance characteristics is also explored. Gate capacitance has non-monotonic behavior with ripples for thin gate-insulators. However, as we go beyond the quantum capacitance limit by increasing insulator thickness or decreasing dielectric constant, the ripples are suppressed and smooth monotonic characteristics are obtained.  相似文献   

18.
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.  相似文献   

19.
We fabricated a monolayer graphene transistor device in the shape of the Hall-bar structure, which produced an exactly symmetric signal following the sample geometry. During electrical characterization, the device showed the standard integer quantum Hall effect of monolayer graphene except for a broader range of several quantum Hall plateaus corresponding to small filling factors in the electron region. We investigated this anomaly on the basis of localized states owing to the presence of possible electron traps, whose energy levels were estimated to be near the Dirac point. In particular, the inequality between the filling of electrons and holes was ascribed to the requirement of excess electrons to fill the trap levels. The relations between the quantum Hall plateau, Landau level, and filling factor were carefully analyzed to reveal the details of the localized states in this graphene device.  相似文献   

20.
Without resorting to either the Kawaji’s simplified model of interaction with only two-dimensional phonons or to the equipartition approximation for the phonon distribution, the characteristics of the momentum relaxation time of the conduction electrons in a quantized surface layer for interaction with intravalley acoustic phonons have been analysed under the condition of low temperature. The scattering and the mobility characteristics thus obtained for an n-channel (1 0 0)-oriented Si inversion layer are apparently quite different from what follows in the traditional framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号