首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
原花色素是一类具有抗氧化活性的多酚化合物,诸多优良特性使其应用在医药、食品等领域。对花生红衣原花色素的结构、性质、应用进行概述,并提出原花色素今后的发展方向。  相似文献   

2.
花生红衣中自藜芦醇、原花色素提取工艺的研究   总被引:2,自引:0,他引:2  
对超声波辅助提取花生红衣中白藜芦醇、原花色素的工艺进行了研究。从5种常用试剂中选择出乙醇作为提取剂,并在单因素实验的基础上,通过正交实验优化了白藜芦醇、原花色素的提取条件:料液比1:6,温度70℃,乙醇浓度60%,提取时间20min,pH3,提取次数1次;在最佳工艺条件下,白藜芦醇、原花色素的提取得率分别为0.036%、4.96%。  相似文献   

3.
花生红衣中白藜芦醇、原花色素提取工艺的研究   总被引:15,自引:0,他引:15  
刘大川  刘强  吴波  徐金发 《食品科学》2005,26(7):144-148
对超声波辅助提取花生红衣中白藜芦醇、原花色素的工艺进行了研究。从5种常用试剂中选择出乙醇作为提取剂,并在单因素实验的基础上,通过正交实验优化了白藜芦醇、原花色素的提取条件:料液比1:6,温度70℃,乙醇浓度60%,提取时间20min,pH3,提取次数1次;在最佳工艺条件下,白藜芦醇、原花色素的提取得率分别为0.036%、4.96%。  相似文献   

4.
研究了花生红衣低聚原花色素还原能力,对羟基自由基、亚硝酸根离子的清除效果,对亚油酸氧化的抑制作用及对超氧阴离子的抑制效果.结果表明:在相同浓度每件下,花生红衣低聚原花色素还原能力,对羟基自由基、亚硝酸根离子的清除效果均优于VC;对亚油酸的自动氧化起到很好的抑制作用;当花生红衣低聚原花色素达到一定浓度时,对邻苯三酚产生的超氧阴离子具有显著的抑制作用.低聚原花色素是一种优良的天然抗氧化剂.  相似文献   

5.
研究了花生红衣中低聚原花色素(OPC)的稳定性。结果表明:低聚原花色素最大吸收波长为280nm,具有很强的耐光性;当T≤75℃时,耐热性较好;中性及酸性环境中性质稳定;对Fe3+敏感,其它金属离子影响较小。  相似文献   

6.
为探究花生红衣中原花青素的提取效果,在超声辅助提取的基础上,结合水浴浸提以提高提取效果,并利用正交试验对工艺进行优化.结果表明,各因素影响原花青素提取效果的主次顺序为:超声时间>乙醇体积分数>料液比>超声温度;提取最佳条件为:超声时间15 min、乙醇体积分数60%、料液比1:45(g/mL)、超声温度35℃、水浴温度...  相似文献   

7.
响应面法优化花生红衣原花青素微波辅助提取工艺   总被引:2,自引:0,他引:2  
以花生红衣为原料,通过单因素试验,研究了乙醇体积分数、微波功率、微波处理时间、料液比对微波辅助提取花生红衣原花青素的影响,并在单因素试验基础上,设计三因素三水平的响应面分析方法对微波提取原花青素工艺进行优化,建立了二次多项式回归方程的预测模型,结果表明:微波辅助提取花生壳原花青素最佳参数为花生红衣粒度80目(0.198 mm),料液比1 g∶40 mL,乙醇体积分数75%,微波提取时间120s,微波功率240 W,在此条件下花生红衣原花青素得率为11.38%。  相似文献   

8.
响应面法优化超声辅助提取花生红衣多酚工艺   总被引:1,自引:0,他引:1  
王文昕  董全 《食品科学》2012,33(22):1-5
以花生红衣为原料,采用超声波辅助提取其中的多酚类物质。通过单因素试验对超声时间、超声功率、料液比、乙醇体积分数等工艺参数进行研究,并用响应面法优化提取工艺,建立二次多项数学模型。结果表明,花生红衣多酚提取的最佳工艺参数为超声时间24.4min、超声功率408W、料液比1:29.6(g/mL)、乙醇体积分数51%。结合实际操作,响应面优化的最优工艺参数调整为超声时间24min、超声功率410W、料液比1:30(g/mL)、乙醇体积分数51%,此条件下花生红衣多酚得率为8.95%。  相似文献   

9.
沙棘籽中原花色素的提取工艺研究   总被引:1,自引:0,他引:1  
本文以脱脂沙棘籽为原料,乙醇为提取液,通过提取温度、提取时间、脱脂时间、料液比、酒精浓度、pH值6个单因素实验,在中心组合实验基础上,采用响应面分析法,确定沙棘籽中原花色素的最优提取条件。研究结果表明,在提取温度21℃、pH5.1、酒精浓度65%时,沙棘籽中原花色素的提取率达5.84%(以脱脂沙棘干重计),粗品纯度达39.18%。  相似文献   

10.
利用超声-微波协同处理优化花生红衣原花青素(peanut skin procyanidins,PSPc)的提取工艺,并评价其抗氧化活性。以预处理后的花生红衣为研究对象,超声-微波协同乙醇提取PSPc,在单因素(超声功率、超声时间、微波功率、微波时间、乙醇浓度、料液比、浸提温度)试验的基础上,利用Plackett-Burman(PB)试验设计筛选出影响PSPc提取量的显著因素,进一步采用响应面法对提取工艺进行优化;并且评价不同提取工艺对PSPc提取量和其抗氧化活性(DPPH自由基清除能力、羟自由基清除能力和铁离子还原/抗氧化能力)的差异性。结果表明:160 W超声10 min,240 W微波 90 s,70%乙醇、50 ℃浸提 20 min、料液比 1∶40(g/mL),在此条件下,PSPc的提取量可达到 186.38 mg/g,显著高于超声波辅助提取、微波辅助提取等其他方法(p<0.05),且有较好的抗氧化活性。  相似文献   

11.
利用响应面法优化超声波提取生姜中姜辣素的工艺条件。在单因素实验的基础上,选取料液比、超声时间、乙醇浓度为影响因子,应用Box-behnken中心组合设计建立数学模型,以姜辣素的提取率为响应值,进行响应面分析。结果表明,超声波提取生姜中姜辣素的最佳工艺条件为:料液比为1:13.7,超声时间为25.9min,乙醇浓度为90.0%。此条件下姜辣素的提取率预测值为7.38mg/g,验证值为7.41 mg/g。  相似文献   

12.
响应面分析法优化乙醇提取向日葵壳红色素工艺研究   总被引:1,自引:0,他引:1  
魏丽  单春会 《食品科学》2010,31(6):122-126
以向日葵壳为原料提取红色素。在单因素试验的基础上进行中心组合设计,利用响应面法对其提取工艺参数进行优化。结果表明:提取温度54℃、提取时间112min、液料比22:1(mL/g)时,向日葵壳色素提取量最高为663.03mg/100g,预测值为661.74mg/100g,与实测值相符。以向日葵壳提取色素可以提高向日葵的附加值。  相似文献   

13.
令博  王捷  吴洪斌  明建 《食品科学》2011,32(18):24-29
以酿酒葡萄皮渣为原料采用超声辅助法提取葡萄皮渣多酚,在单因素试验基础上固定超声功率100W、乙醇体积分数40%,采用三因素三水平的响应面试验优化设计方法,研究液料比、提取时间和超声温度对多酚得率的影响,依据回归分析得到最佳提取工艺条件为液料比16:1(mL/g)、超声提取时间57min、超声温度50℃。在此条件下葡萄皮渣多酚提取量为(42.51±1.21)mg/5g。以水溶性VE为对照物,通过DPPH法和铁氰化钾法对葡萄皮渣多酚的抗氧化活性进行体外评价,发现葡萄皮渣多酚具有较强的清除DPPH自由基能力和还原能力。由此可以得出,葡萄皮渣多酚具有一定的抗氧化活性,并在一定的范围内,其抗氧化活性与提取液的质量浓度具有较好的线性关系。  相似文献   

14.
本实验采用单因素试验和响应面分析法来确定红莲外皮中原花青素提取的最佳工艺条件。通过单因素试验探讨提取溶剂的种类、提取溶剂的浓度、酸的种类、pH、液料比、提取温度、提取时间、提取次数这几个因素对原花青素提取效果的影响;根据单因素试验结果固定提取温度40 ℃,提取时间90 min,提取次数1次,选择pH、液料比和丙酮浓度进行三因素三水平的响应面试验,依据回归分析得到最优工艺条件为:pH 2.6,液料比55 mL/g,丙酮浓度67%。此工艺条件下红莲外皮原花青素提取率为9.57%  相似文献   

15.
在百部多糖提取体系中,利用响应面分析法(response surface methodology)对在单因素试验基础上选取的提取温度、液料比、提取时间三个主要因素,以百部多糖得率为响应值,对其工艺进行了优化。得出百部多糖水提取的最佳工艺条件为:提取温度83℃,液料比33:1(V/m),提取时间200min,百部多糖的实际提取率为3.74%,比单因素试验最高提取率高出11.31%。  相似文献   

16.
为了探索花生根白藜芦醇提取的最佳条件,在单因素试验的基础上,应用响应面法优化花生根白藜芦醇的提取条件。结果表明:乙醇浓度、提取温度和提取时间对花生根白藜芦醇的提取效果有显著影响,且为非线性关系,最佳提取条件为乙醇浓度65%、提取温度52℃、提取时间39min,在此条件下白藜芦醇的提取率为0.012%。实验证明响应面法对花生根白藜芦醇提取条件的优化是可行的,得到的白藜芦醇提取条件具有实际应用价值。  相似文献   

17.
文章以金莲花为原料,采用响应曲面分析法建立了金莲花黄色素超声波提取工艺的二次多项数学模型,并探讨了超声提取功率、pH、超声时间和液固比对提取效果的影响,根据该模型进行了工艺参数优选,试验所得的最优化条件为:超声提取功率85W,pH 4.5,超声时间46min,固液比68∶1,该条件下一次可获得为1.188g的金莲花黄色素,提取率为26%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号