首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

2.
The lithosphere of the Northern Alpine foreland has undergone a polyphase evolution during which interacting stress-induced intraplate deformation and upper mantle thermal perturbations controlled folding of the thermally weakened lithosphere. In this paper we address relationships among deeper lithospheric processes, neotectonics and surface processes in the Northern Alpine foreland with special emphasis on tectonically induced topography. We focus on lithosphere memory and neotectonics, paying special attention to the thermo-mechanical structure of the Rhine Graben System and adjacent areas of the northern Alpine foreland lithosphere. We discuss implications for mechanisms of large-scale intraplate deformation and links with surface processes and topography evolution.  相似文献   

3.
In the northern part of the Upper Rhine Graben (URG), a high-resolution seismic reflection survey was carried out on the Rhine River over a length of 80 km, and on its tributary Neckar over a length of 25 km. The seismic investigation provides new results to redefine the base of Quaternary fluvial sediments from Oppenheim upstream to the south of Mannheim. The standard Quaternary thickness map of Bartz (1974) was partially revised and completed. Maximum Pleistocene sediment thickness is documented in the area of Mannheim with approximately 225 m. The top of the Pliocene in this area is sub-horizontal and not faulted, and rises downstream continuously towards the fault block of Worms. Intercalated lacustrine pelitic layers play a main role in defining the litho-stratigraphy in this part of the URG. In the north of Worms, Pleistocene sediments are mainly coarse-grained. In the area of Worms, a Pleistocene tectonic phase along N–S striking normal faults with variable displacement along the strike is obvious.  相似文献   

4.
The distribution of hypocentres in the Upper Rhine Graben area is re-examined, and discussed with respect to the present day tectonic framework. Most earthquakes occur within a N60° striking wedge, located on top of a Moho dome. This wedge is limited by the surface and at depth, by a plane which, in the south of the dome, coincides with the SE dipping Conrad discontinuity. In depth, the seismicity shows a normal distribution the maximums of which are located on a surface dipping 6° towards SE, parallel to the south-eastward dipping Conrad and Moho. This surface outcrops along the north-western edge of the uplifted crystalline Vosges and Black-Forest. The main shocks in earthquake swarms in the region often occur in the vicinity of this surface and along pre-existing N–S to NE–SW Variscan or Tertiary faults and show focal mechanisms of strike-slip. In contrast, part of the aftershocks show focal mechanisms of reverse faulting associated with SE–NW striking compression. The seismic wedge and the north-westward rising seismic surface suggest initiation of crustal ramp, which starts at the south-eastern rim of the Conrad dome and which may become a thrust plane if SE–NW compression continues. In the south-eastern edge of the graben and above the south-eastern ridge of the Moho dome, where evidences for extension have been found, we identify clustering of hypocentres along a surface that strikes N150°, parallel to the main compression and dipping towards NE. Dominant normal faulting mechanisms along this surface suggests initiation of a normal, probably listric fault. At depth, the onset of the future fault plane is located on top of the NW–SE striking ridge of the lower crust and Moho, which act as a an indenter. In addition to thrusting of the whole wedge towards NW, increasing of NW–SE compression would lead to the formation of a half graben at the place of the present Sierentz depression.  相似文献   

5.
The evolution and geometry of the Tertiary Upper Rhine Graben were controlled by a continually changing stress field and the reactivation of pre-existing crustal discontinuities. A period of WNW-ESE extension in the late Eocene and Oligocene was followed by lateral translation from the early Miocene onwards. This study utilizes 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale. Brittle and creep behaviour of lithospheric rocks are represented by elastoplasticity and thermally activated power-law viscoplasticity, respectively. Contact elements allocated with cohesion and frictional coefficients are used to describe pre-existing zones of weakness in the elastic-brittle field. Our results suggest that (1) extension is accommodated along listric border faults to midcrustal depth of 15–16 km. Beneath, pure shear stretching occurs without a need for localized shear zones in lower crust and upper mantle. (2) Ductile flow at midcrustal depth across the graben accounts for the pronounced halfgraben morphology. Thereby, the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben. (3) Horizontal extension of 8–8.5 km and sinistral displacement across the rift of 3–4 km are needed to accommodate the observed sediment thickness.  相似文献   

6.
In order to study the ongoing tectonic deformation in the Rhine Graben area, we reconstruct the local crustal velocity and the strain rate field from GPS array solutions. Following the aim of this work, we compile the velocities of permanent GPS stations belonging to various networks (EUREF, AGNES, REGAL and RGP) in central western Europe. Moreover, the strain rate field is displayed in terms of principal axes and values, while the normal and the shear components of the strain tensor are calculated perpendicular and parallel to the strike of major faults. The results are compared with the fault plane solutions of earthquakes, which have occurred in this area. A broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations. The area of study is divided into four rigid blocks, between which there might be relative motions. The velocity and the strain rate fields are reconstructed along their borders, by estimating a uniform rotation for each block. The tectonic behaviour is well represented by the four-block model in the Rhine Graben area, while a more detailed model will be needed for a better reconstruction of the strain field in the Alpine region.
Magdala TesauroEmail:
  相似文献   

7.
The deep groundwater in the quaternary gravel sequence of the southern Upper Rhine Graben locally contains high chloride concentrations near the river Rhine between Fessenheim (France) in the South and Breisach (Germany) in the North. This historical pollution is mainly due to past infiltration from the former brine storage basins of the French potash mines on the Fessenheim Island and—to a lesser extent—from the leaching of the salt dumps of the German potash mines in Buggingen and Heitersheim. The spreading of the salt plume was investigated by means of a groundwater model. The aim of the model was to understand the brine movement, the present distribution of chloride as defined by recent hydrochemical investigations, and to select locations for new reconnaissance boreholes. The geological structure was reproduced by a three layer model, which was calibrated for steady state flow conditions. The hydraulic conductivity of the first layer was determined by comparing measured and calculated heads in the model area. The vertical resolution was refined to simulate the density-dependent salt transport processes. The transport of the salt plumes was simulated over a 40-year period, starting at the beginning of brine storage in the 1950s. The relevant transport parameters have been estimated in a sensitivity analysis, where the simulated breakthrough curves of chloride concentration have been compared with the measured data. The results of the groundwater model indicate that brines containing approximately 1 million tons of chloride are still present at the bottom of the aquifer. These highly concentrated salt brines mix with fresh water from the upper part of the aquifer. This dispersive process leads to the formation of a plume of chloride-rich water extending downstream, where pumping wells for several local water supplies are located.  相似文献   

8.
Recently released seismic reflection data, together with previous seismic and well data, are used to describe the development of the Dannemarie basin, in the SW end of the Upper Rhine Graben. The Dannemarie Basin was formed during the main rifting phase of the Upper Rhine Graben as an asymmetrical graben trending NE–SW. Post-rift tectonism shifted the depocenter southward and changed the overall shape of the basin. Miocene Jura compression did not result in the formation of folds, as in the adjacent Mulhouse Horst. Strike slip faulting was dominant in the post-rift period and new faults were created, most notably the north trending and transpressional Belfort Fault. The boundary of the Dannemarie Basin with the Vosges Mountains is part of a restraining bend, which may account for the uplift of the southernmost part of the Vosges Mountains.  相似文献   

9.
The Upper Rhine Graben (URG) is the most perceptible part of the European Cenozoic Rift System. Uplifted Variscan basement of the Black Forest and the Vosges forms the flanks of the southern part of the graben. Apatite and zircon fission-track (FT) analyses indicate a complex low-temperature thermal history of the basement that was deciphered by inverse modelling of FT parameters. The models were tested against the observed data and independent geological constraints. The zircon FT ages of 28 outcrop samples taken along an E–W trending transect across the Black Forest and the Vosges range from 136 to 312 Ma, the apatite FT ages from 20 to 83 Ma. The frequency distributions of confined track lengths are broad and often bimodal in shape indicating a complex thermal history. Cooling below 120°C in the Early Cretaceous to Palaeogene was followed by a discrete heating episode during the late Eocene and subsequent cooling to surface temperature. The modelled time–temperature (tT) paths point to a total denudation of the flanks of URG in the range of 1.0–1.7 km for a paleogeothermal gradient of 60°C/km, and 1.3–2.2 km for a paleogeothermal gradient of 45°C/km since the late Eocene.  相似文献   

10.
A compilation of gravity data from the Upper Rhine Graben (URG) is presented that includes all the main data sources from its German and French parts. This data is used to show that the URG consists of, at least, two arc-shaped and asymmetric rift units that tectonically are the basic building blocks of the graben. In this sense the URG does not differ from other continental rifts, such as the African rifts. This division should replace the now classical geomorphologic division of the URG into three segments, based on their different trends. Moreover, the gravity suggests that the faults in the central and southern segments are continuous and have the same trend, appearing to respond as a single kinematic unit. Changes in the gravity field in the graben are shown to reflect not only the structure of the graben, but also the highly variable composition of the basement. In this respect, the URG is quite different from some other Tertiary continental rifts, where possible changes in the composition of the basement are mostly masked in the gravity field by the effect of the overlying low-density sediments. This characteristic is used to study the extent of some of the main basement units that underlie the graben.  相似文献   

11.
Klaus-G. Hinzen   《Tectonophysics》2003,377(3-4):325-356
Fault plane solutions (FPS) from 110 earthquakes in the northern Rhine area with local magnitudes, ranging from 1.0 to 6.1, and occurring between 1976 and 2002 are determined. FPS are retrieved from P-wave first motions using a grid search approach allowing a detailed exploration of the parameter space. The influence of the 1D velocity model on take-off angles and resulting FPS is examined. All events were relocated with a recently developed minimum 1D model of the velocity structure [J. Geophys. Res. (2003)]. Rose diagrams of the orientation of P, T and B axes show a clear preference of trends of P and T axes at N292°E and N27°E, respectively. The majority of B axes trend in northerly directions. Plunges of P and T axes are mostly around 45° while most B axes are subhorizontal. The main direction of the maximum horizontal stress directly inferred from the fault plane solutions is N118°E.To calculate the orientations of the principal stress axes and the shape of the stress tensor, the inversion method of Gephard and Forsyth [J. Geophys. Res. 89 (1984) 9305] was applied to the whole data set and to several subsets of data. The subsets were formed by grouping events from various geological and tectonic areas and by grouping events into different depth ranges. The subset areas include the Lower Rhine Embayment, the Rhenish Massif, the middle Rhine area, the Neuwied Basin and the area known as the Stavelot–Venn Massif. Inversion of the entire data set shows some ambiguity between a strike-slip and extensional stress regime, with a vertical axis for the medium principal stress and a trend of N305°E and N35°E for the σ1 and σ3 axis, respectively, as the best fitting tensor. Earthquakes from the Lower Rhine Embayment and, to some degree, from the middle Rhine area indicate an extensional stress regime. In the Lower Rhine Embayment, plunge and trend of the σ1 axis are 76° and N162°E and for the σ3 axis 7° and N42°E. The best fitting solution for the area of the Stavelot–Venn Massif is a strike-slip regime with subhorizontal σ1 and σ3 axes with a trend of N316°E and N225°E, respectively. Stress orientations found here agree overall with the results from earlier studies based on smaller data sets. The directions of the maximum and minimum horizontal stresses inverted from focal mechanisms agree well with the stress field predicted by the European Stress Map. This confirms earlier interpretations that the stress field of the Rhine Graben system is controlled by plate driving forces acting on the plate boundaries. However, amplitudes of the stresses change on a local scale and with depth. Estimates of the absolute magnitude of principal stresses favor a normal faulting regime in the shallow crust (above 12-km depth) and a strike-slip regime in the lower crust.  相似文献   

12.
We determine the source parameters of three minor earthquakes in the Upper Rhine Graben (URG), a Cenozoic rift, using waveforms from permanent and temporary seismological stations. Two shallow thrust-faulting events (M L = 2.4 and 1.5) occurred on the rift shoulder just south of Heidelberg in March 2005. They indicate a possible movement along the sediment–crystalline interface due to tectonic loading from the near-by Odenwald. In February 2005, an earthquake with a normal-faulting mechanism occurred north of Speyer. This event (M L = 2.8) had an unusual depth of about 22 km and a similar deep normal-faulting event occurred there in 1972 (M L = 3.2). Other lower crustal events without fault plane solutions are known from 1981 and 1983. At such a depth, inside the lower crust, ductile behaviour instead of brittle faulting is commonly assumed and used for geodynamic modelling. Based on the newly available fault plane solutions we can confirm the brittle, extensional regime in the upper and lower crust in the central to northern URG indicated in earlier studies.  相似文献   

13.
Twenty paleogeographic maps are presented for Middle Eocene (Lutetian) to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume. Following a first lacustrine-continental sedimentation during the Middle Eocene, two and locally three Rupelian transgressive events were identified with the first corresponding with the Early Rupelian Middle Pechelbronn beds and the second and third with the Late Rupelian Serie Grise (Fischschiefer and equivalents). During the Early Rupelian (Middle Pechelbronn beds), a connection between North Sea and URG is clearly demonstrated, but a general connection between North Sea, URG and Paratethys, via the Alpine sea, is proposed, but not proved, during the late Rupelian. Whereas in the southern URG, a major hiatus spans Early Aquitanian to Pliocene times, Early and Middle Miocene marine, brackish and freshwater facies occur in the northern URG and in the Molasse Basin (OMM, OSM); however, no marine connections between these basins could be demonstrated during this time. After the deposition of the molasse series, a very complex drainage pattern developed during the Late Miocene and Pliocene, with a clear connection to the Bresse Graben during the Piacenzian (Sundgau gravels). During the Late Miocene, Pliocene and Quaternary sedimentation persisted in the northern URG with hardly any interruptions. The present drainage pattern of the Rhine river (from Alpine area to the lower Rhine Embayment) was not established before the Early Pleistocene.  相似文献   

14.
We present a general stratigraphic synthesis for the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene times. The stratigraphic data were compiled both from literature and from research carried out by the authors during the past 6 years ; an index of the stratigraphically most important localitites is provided. We distinguish 14 geographical areas from the Helvetic domain in the South to the Hanau Basin in the North. For each geographical area, we give a synthesis of the biostratigraphy, lithofacies, and chronostratigraphic ranges. The relationships between this stratigraphic record and the global sea-level changes are generally disturbed by the geodynamic (e.g., subsidence) evolution of the basins. However, global sea-level changes probably affected the dynamic of transgression–regression in the URG (e.g., Middle Pechelbronn Beds and Serie Grise corresponding with sea-level rise between Ru1/Ru2 and Ru2/Ru3 sequences, respectively) as well as in the Molasse basin (regression of the UMM corresponding with the sea-level drop at the Ch1 sequence). The URGENT-project (Upper Rhine Graben evolution and neotectonics) provided an unique opportunity to carry out and present this synthesis. Discussions with scientists addressing sedimentology, tectonics, geophysics and geochemistry permitted the comparison of the sedimentary history and stratigraphy of the basin with processes controlling its geodynamic evolution. Data presented here back up the palaeogeographic reconstructions presented in a companion paper by the same authors (see Berger et al. in Int J Earth Sci 2005).  相似文献   

15.
This study of fluvial terraces of the River Rhine and tributaries aims to search for indications of Pleistocene tectonic activity. The study area includes the northern Upper Rhine Graben (URG), the Mainz Basin and the adjacent Rhenish Massif with the Middle Rhine Valley. High rates of Quaternary surface processes, large amount of human modifications, relatively slow tectonic deformation and presently low intra-plate seismic activity characterize this area. Therefore, the records of relatively slow tectonic deformation are less well preserved and thus difficult to detect. This study uses the relative position of fluvial terraces to determine the more local effects of fault movements on the terraces and to evaluate their displacement rates and patterns. The research is based on a review of previous terrace studies and new terrace mapping from the eastern Mainz Basin and the bordering URG using topographic map interpretations and field observations. This newly mapped sequence of terrace surfaces can be correlated to other terraces in the vicinity on the basis of relative height levels. Terrace correlation between the western Mainz Basin and Middle Rhine Valley relies on a single chronostratigraphic unit (Mosbach sands) and additional relative height correlations. This is the first study to present a continuous correlation of terraces from the western margin of the URG to the Rhenish Massif and enables the study of the transition from the subsiding graben to the uplifted Rhenish Massif. By means of a longitudinal profile, which ranges from the URG to the Rhenish Massif, the influence of individual fault movements on the terrace levels and the large-scale regional uplift is demonstrated. It is evident from the profile that the uplift of Early to Middle Pleistocene terraces increases northwards, towards the Rhenish Massif. The uplift was diachronic, with a significant pulse occurring first in the northern URG (Lower Pleistocene) and later in the Rhenish Massif (Middle Pleistocene). The largest vertical displacements are recorded for the boundary fault separating the Mainz Basin and the Rhenish Massif (Hunsrück–Taunus Boundary Fault) and for faults bounding the northeastern Mainz Basin. The motions and displacement rates calculated for individual faults indicate deformation rates in the order of 0.01–0.08 mm/year. At this stage, the calculation of displacement rates depends mostly on a single dated stratigraphic unit. Additional dating of terrace deposits is urgently needed to better constrain the temporal development of the terrace sequence and the impact of tectonic movements.  相似文献   

16.
This paper integrates the results of different techniques—local and regional travel time tomography, reflection seismics, and surface geology. With this integration of different techniques, working on different scales, it is possible to derive a comprehensive picture of the present-day structures in the lithosphere of the Upper Rhine Graben. It is shown that the stucture of the lithosphere is dominated by structures related to the Variscan orogeny. Late stage strike-slip reactivation of the internal faults of the Rhine Graben is observed in the field. This reactivation is of dominant influence on the geomorphology in the southern end of the Upper Rhine Graben.  相似文献   

17.
The Upper Rhine Graben (URG) is characterized by a thickness of up to 500 m of unconsolidated Quaternary sediments, providing excellent records of the Rhine river system and its responses to tectonic and climatic changes. The most complete Quaternary sequence of fluvial and limnic-fluvial deposits is found in the Heidelberg Basin, due to its long-term subsidence since the mid-Eocene. The aim of this study is to provide a chronological framework using optically stimulated luminescence (OSL) dating of aeolian and fluvial sands derived from the upper 33 m of a sediment core, which was drilled into the Heidelberg Basin infill close to the village of Viernheim, Germany. The OSL ages demonstrate that the dated fluvial sediments were deposited during the last glacial period (Weichselian) and that there were at least three aggradation periods during this episode. The coversands that cap the sequence were emplaced during the early Holocene.  相似文献   

18.
《International Geology Review》2012,54(14):1744-1762
The European Cenozoic Rift System hosts major temperature anomalies in Central Europe. In its central segment, the Upper Rhine Graben (URG), temperatures range from 75°C to nearly 150°C at a depth of 2000 m. Different hypotheses have been suggested to explain the localization of these anomalies. Our review and comprehensive interpretation of gravimetric and magnetic data, as well as neotectonic activity patterns, suggests that low-density, mostly magnetic and fractured granitic basement is systematically associated with major temperature anomalies. Further analyses provide insight into different heat transport processes contributing to the localization of these anomalies. Magnetic and gravity anomalies are known to represent lithological variations associated with the pre-Permian. We show their spatial relationship with positive temperature anomalies in the URG. Correlation between magnetics and temperature reveal a mean contribution of heat production to the temperature anomaly of about 10–15°C. A slightly higher mean value is obtained from correlation between gravity and temperature, which may be attributed to effects resulting from fracture porosity. The spatial relationship between temperature anomalies and neotectonic patterns indicates compressional shear and uplift regime for the major anomalies of the central segment of the URG. This is in agreement with different numerical models indicating free convection on fracture zones linked to faults. Our findings show that about 15–25% of the temperature anomaly can be attributed to variation in heat production. Hydrothermal circulation convection along faults, activated by the tectonic context, may explain the remaining 75–85% of the temperature anomalies.  相似文献   

19.
Eocene to Early Oligocene syn-rift deposits of the southern Upper Rhine Graben (URG) accumulated in restricted environments. Sedimentation was controlled by local clastic supply from the graben flanks, as well as by strong intra-basinal variations in accommodation space due to differential tectonic subsidence, that in turn led to pronounced lateral variations in depositional environment. Three large-scale cycles of intensified evaporite sedimentation were interrupted by temporary changes towards brackish or freshwater conditions. They form three major base level cycles that can be traced throughout the basin, each of them representing a stratigraphic sub-unit. A relatively constant amount of horizontal extension (ΔL) in the range of 4–5 km has been estimated for the URG from numerous cross-sections. The width of the rift (L f ), however, varies between 35 and more than 60 km, resulting in a variable crustal stretching factor between the bounding masterfaults. Apart from block tilting, tectonic subsidence was, therefore, largely controlled by changes in the initial rift width (L 0). The along-strike variations of the graben width are responsible for the development of a deep, trough-like evaporite basin (Potash Basin) in the narrowest part of the southern URG, adjacent to shallow areas in the wider parts of the rift such as the Colmar Swell in the north and the Rhine Bresse Transfer Zone that delimits the URG to the south. Under a constant amount of extension, the along-strike variation in rift width is the principal factor controlling depo-centre development in extensional basins.  相似文献   

20.
The northern Upper Rhine Graben, situated in the central part of the European Cenozoic rift system, is currently characterized by low intra-plate seismicity. Historical earthquakes have not been large enough to produce surface rupturing. Moreover, the records of Quaternary surface processes and human modifications are presumably better preserved than the record of the relatively slow tectonic deformation.In order to gain information on the neotectonic activity and paleoseismicity in this setting, the geological and geomorphological records of fault movements along a segment of the Western Border Fault (WBF) were studied using an integration of techniques in paleoseismology, structural analysis and shallow geophysics. The WBF segment investigated follows a 20 km long linear scarp of unclear origin. A series of geophysical measurements were performed and the results suggested that near-surface deformation structures are present at the segments' southern end. Several trenches opened at this location revealed fault structures with consistent extensional style and a maximum vertical displacement of 0.5 m. In one trench, the deformation structures were dated between 19 and 8 ka. Assuming the deformation has been caused by an earthquake, a Mw 6.5 earthquake would be implied. Aseismic deformation would point to a fault creep rate ≥ 0.04 mm/yr.A reconstruction of the sequence of events at the trench site, from Middle Pleistocene to Present, demonstrates that the morphology at the base of the scarp is the result of interplay between tectonic activity and fluvial and erosional processes. At the regional scale, a mixed origin for the WBF scarp is proposed, combining the effects of fluvial dynamics, erosion, regional uplift and localized tectonic activity on the WBF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号