首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
非线性摩擦会降低挖掘机器人电液伺服系统的动静态性能,引起轨迹爬行、平峰和稳态误差等现象。经典LuGre摩擦模型仅与速度有关,内部鬃毛状态变量无法准确测量,无法全面描述复杂的挖掘机器人电液伺服系统摩擦特性。本文综合考虑电液伺服系统位置、速度和方向等信息,设计了一种改进的LuGre摩擦模型,同时引入速度阈值解决了弹性鬃毛平均变形状态观测器不稳定问题。其次,为了解决传统优化算法陷入局部最优解、收敛速度慢等问题,通过引入惯性权重、异步变化和精英突变操作改进基本粒子群优化算法,以精准快速辨识出改进LuGre摩擦模型中的6个未知参数。最后,结合辨识出的摩擦模型,基于结构不变性原理设计前馈摩擦补偿控制器,并在23吨挖掘机器人进行了正弦和三角波不同工况下的轨迹跟踪实验。实验结果表明,传统的比例积分微分控制器跟踪误差最大,三角轨迹最大跟踪误差达到了29.68 mm,基于改进LuGre模型设计的前馈摩擦补偿控制器仅为9.70 mm,误差减小了67.31%,基于改进LuGre模型设计的前馈摩擦补偿控制器可以有效提升挖掘机器人的轨迹跟踪精度。  相似文献   

2.
针对摩擦非线性影响直流伺服系统控制性能的问题,提出了一种基于LuGre模型的变增益自抗扰控制(VGADRC)方法。建立了含LuGre模型的直流伺服系统微分方程模型。基于该模型设计摩擦补偿与自抗扰控制(ADRC)相结合的复合控制器。该控制器在不增大观测器增益的前提下,利用LuGre模型前馈补偿系统中的摩擦非线性,同时减小量测噪声对系统的影响。此外,为抑制传统线性扩张状态观测器(LESO)初始时刻引起的峰值问题,采用三阶变增益线性扩张状态观测器(VGLESO)对系统中的总扰动进行估计。最后仿真结果表明,采用所提控制方案能有效提高系统的低速跟踪性能和动态性能。  相似文献   

3.
梁青  张剑  王永 《微特电机》2011,39(11):67-69
LuGre模型是一种常用的对伺服系统进行动态摩擦建模和补偿的模型。基于一种改进的LuGre模型,建立了伺服系统模型;利用反步自适应控制算法得到系统控制律,并构造Lyapunov函数证明了系统的稳定性;将控制结果方面与传统的前馈PID固定摩擦补偿算法进行比较。仿真结果表明该方法能有效降低摩擦因素的不利影响,且比传统的控制算法具有更高的跟踪精度。  相似文献   

4.
为了提高调速伺服系统的跟踪性能,提出了一种基于LuGre模型的调速伺服系统自抗扰控制策略。利用LuGre摩擦模型对摩擦扰动进行辨识,并对其进行前馈补偿,在速度环和电流环分别加入一阶自抗扰控制器,对剩余扰动进行实时估计并补偿。ADRC弥补了摩擦模型的非绝对完美的问题,LuGre模型也缓解了ADRC的计算压力,互为补充,提高了性能。仿真结果表明:所提控制策略响应速度快、调节时间短、超调低,提高了系统的控制速度和精度。  相似文献   

5.
为了补偿摩擦的影响,提出了一个有效的基于观测器的补偿方案。摩擦会引起跟踪误差、自振荡以及滞-滑现象。摩擦的补偿离不了摩擦模型,对流行的LuGre模型和钳位型摩擦模型进行了对比分析。指出摩擦是一种自然现象,不可能用从速度v到摩擦力F的简单的单方向的信号流关系来完全描述。从这个意义上来说,LuGre模型并不是真正的摩擦模型,因此基于LuGre模型的观测器补偿方案并不是总能奏效的。提出基于扰动观测器的补偿方案,并进行了分析。因为带摩擦的系统的典型特性是滞-滑爬行和滞-滑自振荡,所以摩擦补偿的效果也就应该从这些非线性特性上来进行考察。分析表明,这种基于扰动观测器的补偿对自振荡有很强的抑制作用,并可消除低速下的爬行现象。  相似文献   

6.
提出了一种基于非线性观测器的命令滤波自适应反步控制(OCFABC)方法,以解决具有LuGre摩擦模型的双轴伺服系统中的位置跟踪和速度同步问题。观测器用于系统摩擦补偿。命令滤波器作用于虚拟控制信号,解决反步法中的计算爆炸问题,建立误差补偿方程,提高跟踪精度。此外,还设计了速度同步信号,以达到更好的系统同步效果。利用Lyapunov理论分析了闭环系统的稳定性。最后,通过仿真和试验结果证明了所设计方法的有效性和优越性。  相似文献   

7.
针对摩擦非线性影响伺服系统动静态性能的问题,在典型伺服系统模型中引入LuGre摩擦模型,介绍了一种应用自适应神经网络补偿摩擦的控制算法。在负载转矩未知、模型包含不确定项、系统参数时变的情况下,利用神经网络对非线性项进行逼近,同时引入自适应的思想,利用反步法设计自适应控制器在线补偿神经逼近系统的估计误差。此外,通过Lyapunov稳定定理对控制系统进行分析,证明整体系统是渐进稳定的。仿真结果表明:该补偿方法能对伺服系统中摩擦进行有效抑制,保证系统的跟踪性能,并在负载扰动和系统参数时变情况下仍具有较强的鲁棒性。  相似文献   

8.
摩擦是伺服系统在低速运动时精度降低的主要非线性因素之一。采用基于模型的摩擦补偿可以有效地预测摩擦力,并实现误差补偿,因此利用可全面描述系统摩擦力的GMS摩擦模型预测伺服系统的摩擦力。为提高此模型参数的辨识精度,设计了全维速度观测器提供反馈速度信息,克服低速时速度测量误差带来的影响;并基于此观测器,给出了GMS摩擦模型的参数辨识的实验方法。为验证所提出的摩擦补偿及辨识方法的有效性,在一新型的空间大型末端执行器的拖动系统进行了拖动实验。实验结果表明,通过此摩擦模型补偿,可使拖动系统的位置跟踪精度优于0.02 mm,与具有固定参数的Stribeck摩擦模型相比,位置跟踪精度提高超过30%。  相似文献   

9.
《微电机》2016,(4)
为了降低运动摩擦和转矩波动对空间载荷伺服控制系统低速跟踪精度的影响,提出了基于简化LuGre摩擦模型和干扰观测器的摩擦误差补偿方法。为了减少伺服控制系统运算量,详细分析了适用于低速运行环境的LuGre摩擦理论;建立了简化的LuGre摩擦理论模型;设计了速度环干扰观测器;实现了由于低速运动摩擦影响空间载荷伺服系统跟踪精度补偿。通过Matlab/Simulink仿真,与传统的PID控制方法相比,该方法在正弦波作为输入信号时,可以消除伺服系统的低速爬行和抑制闭环速度扰动;在0.5°/s阶跃信号作为输入时,其跟踪误差带±0.0052°/s。  相似文献   

10.
针对陀螺漂移测试转台直流力矩电机系统中存在的非线性动态摩擦和电机参数不确定性,为提高转台摇摆状态位置跟踪精度,提出了一种新的鲁棒自适应补偿控制器。电机中摩擦模型采用摩擦参数为非一致性变化的LuGre动态摩擦模型。该控制器包含一个参数自适应律和等效PID控制律来估计未知LuGre模型参数和电机参数并给与补偿。最后Lyapunov方法和仿真结果证明该鲁棒自适应补偿控制器保证了闭环系统全局稳定性和对期望位置信号的渐进跟踪,提高了转台摇摆跟踪精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号