首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究X70管线钢在高温压缩变形过程中的组织转变规律,利用Gleeble-3500型热模拟机,在应变速率为0.01~1.00 s~(-1)、变形温度为850~1 250℃的变形条件下,对X70管线钢进行单道次高温压缩变形实验,研究试验钢的动态再结晶行为。结果表明:该钢在应变速率为0.01~0.10 s~(-1)和温度为1 100~1 250℃下变形时易发生动态再结晶;考虑到晶粒细化,再结晶温度区,连轧温度应控制在1 100~1 200℃、轧制应变速率为0.10 s~(-1);非再结晶区,开轧温度应≤950℃、轧制应变速率为0.10 s~(-1)。  相似文献   

2.
在应变速率为0.001~5 s~(-1)、变形温度为440~600℃条件下,在Geeble-1500D热模拟试验机上对Al-0.2Sc-0.04Zr(质量分数/%)变形铝合金开展单向热压缩试验,研究其高温流变行为。结果表明:流变应力随变形温度的减小和应变速率的增加而增大,应力曲线经历线性-硬化阶段、抛物线-动态回复阶段、完全动态再结晶-稳态变形阶段;压缩变形后试样中间部位的组织呈条带状,晶粒沿垂直于压缩方向被压扁和拉长,再结晶晶粒尺寸随变形温度的升高和应变速率的减小而增大;建立的Z参数-Arrhenius型本构方程对Al-0.2Sc-0.04Zr合金峰值应力的预测平均相对误差率仅为7.428%;该合金较高的热变形激活能(642.575 kJ/mol)和应变指数(13.810 5)与第二相粒子Al3(Sc,Zr)有关。  相似文献   

3.
利用Gleeble-3500热模拟试验机,在温度为300~420℃、应变速率为0.000 5~0.500 0 s~(-1)条件下对AZ80+0.4%Ce变形镁合金进行热模拟实验,研究该合金的高温流变行为。用ZIESS PL-A662数码光学显微镜分析温度与应变速率对合金显微组织演化规律的影响。结果表明:应变速率一定时,流变应力随温度的升高逐渐降低;变形温度一定时,合金的流变应力随应变速率的增大而升高。合金的显微组织演化过程为变形温度较低时,存在大量未结晶的粗大晶粒,动态再结晶进行不完全,温度升高后,动态再结晶进行较完全;动态再结晶晶粒尺寸随应变速率的增加而减小。最后,以经典的Arrhenius本构关系模型为基础,采用线性回归方法建立AZ80+0.4%Ce变形镁合金的流变应力本构模型,对比峰值应力的实验值与计算值,平均相对误差仅为6.00%。  相似文献   

4.
采用Gleeble-1500D热模拟机对Mg-Al-Zn-Nd稀土镁合金的变形规律及动态再结晶行为进行研究。结果表明:合金的流变应力随应变速率的增大而增加,随温度的升高而降低;变形量对应力-应变关系的影响很小;变形过程中发生动态再结晶,随变形程度的增加,动态再结晶晶粒不断增多,材料呈现明显的软化趋势,流动应力下降。当动态再结晶过程完成以后,继续变形,材料又出现硬化行为;并且动态再结晶平均晶粒尺寸的自然对数与Zener-Hollomon参数的自然对数呈线性关系。根据实验分析,合金适宜的热加工条件为:变形温度400~450℃,应变速率0.1~5s-1。  相似文献   

5.
通过热压实验确定了钛合金TC6等温变形时的温度升高和真应力应变曲线。实验条件:变形温度800℃~1040℃,应变速率0.001s^-1~50s^-1,变形量30%~50%。实验结果表明钛合金TC6的流动应力变化主要取决于工艺参数的变化,尤其是变形温度和应变速率。该合金的最大应力和稳定应力有着相同的特性,即随着应变速率的增大和变形温度的降低而增加。等温锻造时,微组织特性——体积分数、晶粒尺寸、原始α晶粒排列是随着温度、变形量和应变速率的变化而变化的。  相似文献   

6.
某新型粉末高温合金的高温变形与动态再结晶   总被引:1,自引:0,他引:1  
运用Gleeble-1500 热模拟机,对热等静压态的某新型粉末高温合金进行了形变温度在1120-1170℃和应变速率在2×10-3-2×10-1s-1下的高温变形与动态再结晶行为研究。研究表明:该合金在高温变形时应力-应变曲线上峰值应力σp与温度T和应变速率ε之间符合下式关系:Z=ε·exp(Qa/RT)=A2σpn。在一定的变形条件下,通过高温变形过程中的动态再结晶能获得细晶组织,其动态再结晶晶粒平均尺寸与Zener-Hollomon参数呈双对数线性关系。  相似文献   

7.
AZ61B镁合金热模拟挤压变形的研究   总被引:5,自引:0,他引:5  
采用Gleeble-1500D热模拟机,对AZ61B镁合金在温度为623K和673K,应变速率为0.01,0.1、1 s-1时,应变量为50%的高温塑性变形行为,以及热模拟后镁合金组织的变化进行了研究。分析了流变应力与应变速率和温度的关系,计算出了应力指数和变形激活能,结果表明:流变应力随应变速率的增加而增加,随应变温度的增加而减小;镁合金发生了动态再结晶,有大量细小等轴晶出现,探明了变形软化的主要机制是动态再结晶。  相似文献   

8.
为探究7A52铝合金的流动应力变化规律,在材料拉伸试验数据基础上,建立Johnson-Cook本构模型。利用有限元软件AQAQUS,模拟7A52铝合金在温度为25~400℃、应变率为0.1~10 000 s~(-1)的准静态和动态拉伸试验。结果表明:温度和应变率都会影响7A52铝合金的流动应力,但对温度的敏感性较大,对应变率敏感性较小;流动应力随着温度的升高而减小;流动应力随着应变率的增加而增大,尤其在应变率高于1 000 s~(-1)时影响更加明显。所建有限元模型结果与试验结果吻合较好,证明该Johnson-Cook本构模型能够在一定温度和应变率范围内预测7A52铝合金的流动应力。  相似文献   

9.
基于等温恒应变速率压缩变形试验研究具有典型动态回复和动态再结晶变化特征的Al-12Zn-2.4Mg-1.2Cu合金的应力-应变曲线,采用加工硬化率和3次多项式拟合相结合的方法,获得试验合金的临界应力/峰值应力、临界应变/峰值应变的比值分别为0.488~0.918和0.195~0.913。随着变形温度升高和应变速率减小,发生动态再结晶的临界应力呈下降趋势;随着应变速率增加和温度降低,发生动态再结晶的临界应变速率呈增大趋势。  相似文献   

10.
研究马氏体时效钢的热变形问题具有理论意义。在变形温度为900~1 050 ℃,应变速率为0.001~1 s-1,最大真应变为1.2的条件下,利用Gleeble-3800热模拟试验机研究18Ni(1 700 MPa)马氏体时效钢的热压缩变形行为,建立该合金的热加工图,并对组织演变规律进行研究。结果表明:在实验条件下,随变形温度的升高和应变速率的降低,合金的流变应力和峰值应变逐渐减小,而能量耗散率(η)逐渐升高,动态再结晶过程进行更充分;当应变量为0.6,流动失稳区面积最小。确定了18Ni马氏体时效钢的完全再结晶区域。  相似文献   

11.
为研究Mg-13Gd-4Y-2Zn-0.5Zr合金热压缩过程中的动态再结晶规律,在变形温度为350~500℃、应变速率为0.001~1.000 s-1条件下,采用Gleeble3500对合金进行压缩实验,通过XRD和金相显微镜对变形后的合金组织进行分析。结果表明:合金经过均匀化,主要相组成为Mg基体以及析出相W相(Mg3Y2Zn3)、I相(Mg3YZn6)和长程有序相(Mg12YZn),且变形过程中长程有序相保留下来;Mg-13Gd-4Y-2Zn-0.5Zr合金热压缩曲线为典型的动态再结晶型,且峰值应力随应变速率的降低和温度的升高而减小;随着应变速率的增加和温度的升高,动态再结晶由晶界扩展到晶内,且组织成分达到均匀。  相似文献   

12.
用铸态Ti-5.5Al-3.0Nb-3.0Zr-1.2Mo合金为基材,在Gleeble-3800D热模拟测试机上高温压缩测试,变形温度为750~900℃,变形速率为0.001~1 s-1,总变形比例为75%。结果表明:应变提高,铸态合金加工硬化明显,流变应力呈直线增大;到达峰值应力后,组织开始软化,在软化与硬化过程达动态平衡时,获得稳定流变。处于低变形温度下,动态软化受应变率影响最明显,合金软化受变形温度与应变率共同作用。升温至850℃,存在动态再结晶现象,表现为动态回复。以较低应变率变形时,促进动态再结晶的快速完成,α相可促进动态再结晶转变。提高应变率后,合金中的β相软化机制由动态再结晶转变成局部塑性流变。  相似文献   

13.
针对热等静压工艺制备的Ti-6Al-4V合金,利用Gleeble-1500热模拟机进行高温热压缩变形试验,结合OM组织观察研究热变形温度为850~1 050℃与变形速率为0.001~5 s-1对该合金热变形组织的影响规律。结果表明:单道次变形时,当温度在900℃及以下,层片状α相发生球化或动态再结晶,得到均匀等轴的细小组织;高于950℃时,变形后淬火组织由均匀等轴β晶粒与板条马氏体组成,晶粒内有交叉排列的短片层α相;在950℃以下,随着应变速率增大,动态再结晶体积分数降低,晶粒内α相细化,当应变速率过大时,变形后组织以拉长的未再结晶粗大β晶粒为主;相较单道次变形,3道次变形中每一道次变形量较小,低应变速率下再结晶组织易粗大化,随着应变速率的增大,再结晶组织不均匀分布。  相似文献   

14.
为研究Mg-9Li-3Al-1.6Y合金的热变形行为,利用Gleeble-1500D型热模拟试验机,在变形温度为200~350℃、应变速率为0.001~1 s~(-1)条件下,对挤压态Mg-9Li-3Al-1.6Y合金进行热力模拟实验。通过研究该合金的真应力-真应变曲线,分析合金的双曲线正弦函数表征的本构方程和热加工性。结果表明:材料的流变应力随应变速率的增加而增加,随温度的升高而下降;用双曲正弦函数能很好地表示材料在热变形中的稳态流变应力。分析热加工图可以看出:较佳的理论热加工区为220~270℃,0.05~0.001 s~(-1);超塑性加工区域为300~350℃,0.015~0.16 s~(-1)。  相似文献   

15.
为指导06Cr18Ni11Ti奥氏体不锈钢塑性加工工艺参数制定及构建数值模型所需材料数据,利用热模拟试验机进行单向等温压缩试验,温度为900~1 200℃,应变速率为0.01~1.00 s-1,变形量为60%。根据真应力-真应变曲线对06Cr18Ni11Ti奥氏体不锈钢热变形机制进行分析,结合线性拟合建立流变应力本构方程和临界应变模型。结果表明:在较高变形温度和较低应变速率下,06Cr18Ni11Ti不锈钢的主要软化机制为动态再结晶,真应力随温度升高而降低,随应变速率减小而降低;为验证流变应力本构方程的准确度,比对预测结果与试验结果,相对误差在10%以内,得到06Cr18Ni11Ti奥氏体不锈钢的热变形激活能为440.61 kJ/mol。  相似文献   

16.
真空退火态钨合金的动态力学性态及其本构关系   总被引:1,自引:0,他引:1  
借助于SHPB实验技术,对真空退火态93W材料在应变速率低于5000s~(-1)范围内的动态力学性态进行了实验研究。发现该材料对应变率具有明显可察觉的敏感性,其动态屈服限在所考察的应变率范围内提高了近一倍。温度从—50℃提高到200℃时,动态屈服限(ε=1100s~(1-))降低了约30%。基于塑性变形的位错动力学分析,建立了考虑应变率和温度效应及双相合金特点的动态本构关系,并对其应用可靠性进行了模拟计算分析。  相似文献   

17.
利用Gleeble3500热模拟机对25Cr Mo钢进行热压缩试验,研究变形温度为950~1 100℃、应变速率为0.01~10 s-1条件下的应力-应变曲线。根据动态材料模型DMM建立材料的热加工图,确定其热变形的流变失稳区,得到25Cr Mo钢在试验参数范围内的最佳热变形工艺参数:温度为1 050~1 100℃、应变速率为0.1 s-1。  相似文献   

18.
为研究初始取向对镁合金在高应变率下的动态变形行为,利用分离式Hopkinson压杆系统对具有不同取向的挤压态AZ31镁合金进行室温动态压缩实验,并通过金相显微镜对冲击后的显微组织进行分析。结果表明:平行于挤压方向(ED)的试样,应力-应变曲线出现屈服转折现象,随应变率的升高保持不变,对应变速率不敏感,屈服强度为50 MPa;但其显微组织变化对应变速率非常敏感,随应变率的提高,显微组织中孪晶数量减少,变形机制以孪生为主转变为以滑移和孪生两种方式为主;垂直于ED的试样,应力-应变曲线无明显的屈服现象,随应变率的提高,屈服强度小幅增大,孪晶数量增加,变形机制以非基面滑移为主向以非基面滑移和压缩孪晶的共同作用为主。  相似文献   

19.
金属材料在塑性变形过程中存在多尺度效应,而多尺度建模仿真是研究多尺度效应的一种有效方法。基于动态再结晶热黏塑性本构理论,对WSTi3515S阻燃钛合金的拉伸变形行为进行仿真模拟,建立相应的多尺度模型,研究变形过程中材料的宏观力学响应和微观应力分布。结果表明:宏观拉伸模拟获得的应力-应变曲线与试验结果吻合;多晶集合模型体积单元,其整体响应与宏观试样微区的行为吻合较好;在变形过程中,应力-应变分布均从中心区向四周扩展,且在高温低应变速率下,应力-应变分布更均匀;随着应变增大,变形局部化由于应力的相互牵制而松弛,应力集中被有效缓解,使变形持续进行,从而获得较好的塑性。  相似文献   

20.
采用Gleeble-1500D热模拟机对Mg-13Gd-4Y-2Zn-0.5Zr合金两种形状试样在温度为400~450℃、应变速率为1s-1、变形量为28%~77%条件下的热变形行为进行研究。研究结果表明:试样形状导致试验合金应力状态不同,对热压缩断裂行为产生明显影响;法兰试样产生纵裂,圆锥试样产生与轴线呈45°角方向斜裂;锥形试样真应力-应变曲线中出现稳态流变阶段,应变增大,曲线再次上升;法兰试样流变应力呈线性上升趋势;法兰试样内整体晶粒变形均匀性较差,圆锥试样变形均匀,存在明显的变形流线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号