首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用循环伏安和计时电位等电化学技术研究了Mn(Ⅱ)在LiCl-KCl-MgCl2-MnCl2熔盐体系中的电还原过程和Mg-Li-Mn合金的共沉积条件.结果显示,在LiCl-KCl-MgCl2-MnCl2熔盐体系中,Mn(Ⅱ),Mg(Ⅱ)和Li(Ⅰ)的还原电位分别为-1.14,-1.78和-2.19 V.Mn先析出,在钼电极表面沉积;Mg在Mn上欠电位沉积生成Mg-Mn合金;而Li在Mg-Mn合金上欠电位沉积形成Mg-Li-Mn合金.实验结果表明,Mn(Ⅱ)在熔盐中的还原电极过程受扩散控制.Mn(Ⅱ)在熔盐中的扩散系数约为10-5 cm2/s.运用XRD技术对恒电流电解制备的Mg-Li-Mn合金进行了分析,结果表明,Mg-Li-Mn合金中含有β-Li,α-Mg和Mn 3个相.  相似文献   

2.
KCl-LiCl-MgCl2熔盐体系中共电沉积制备Mg-Li合金及理论分析   总被引:2,自引:0,他引:2  
在670 ℃的KCl-LiCl-MgCl2熔盐体系中通过共电沉积方法制备了Mg-Li合金,并进行了理论分析。循环伏安表明:670 ℃时,锂在镁上(镁预先沉积到钼丝上)的欠电位沉积形成了液态的Mg-Li合金;当MgCl2质量分数为10%时,出现了Mg-Li合金成核。极化曲线表明:在含有5% MgCl2的熔盐中,MgCl2的极限电流密度为0.35 A·cm-2,超过此值时,Mg和Li就能产生共电沉积。对沉积物进行X射线衍射和电感耦合等离子体发射光谱(ICP)分析表明:通过恒电流电解得到了3种不同相的Mg-Li合金。在电流密度为6.21 A·cm-2电解2 h条件下,只有当MgCl2质量分数小于10%时,才能得到Mg-Li合金。并通过Nernst和浓差极化方程讨论了MgCl2浓度对于Mg-Li合金形成的影响。Mg-Li合金中锂的含量能够通过熔盐中的MgCl2浓度配比和电解参数来控制。实验证明这种直接从原料入手,通过共电沉积制备Mg-Li合金的新方法是可行的。  相似文献   

3.
研究了AlCl_3(ZnCl_2、MgCl_2)对Sm_2O_3的氯化效果以及Sm_2O_3在Li Cl-KCl-AlCl_3(ZnCl_2、MgCl_2)熔盐体系中的电化学行为。在Li Cl-KCl-Sm_2O_3熔盐中加入AlCl_3(ZnCl_2、MgCl_2)后,ICP测量结果表明,AlCl_3体系中Sm(Ⅲ)离子的浓度最高,并且在923 K时达到最大值;固相反应表明,AlCl_3氯化Sm_2O_3生成SmCl_3,而Sm_2O_3和ZnCl_2(MgCl_2)反应生成Sm OCl。电化学行为表明,AlCl_3体系中观察到了两种Al-Sm的合金峰,而ZnCl_2体系中只观察到Zn-Sm金属间化合物的形成峰,MgCl_2体系中没有形成合金。在-6.25 A·cm~(-2)下,W电极上恒电流电解2 h获得了Al-Li-Sm合金,经XRD分析,合金为Al_2Sm相。  相似文献   

4.
研究了温度范围在723-908 K的LiCl-KCl 熔盐体系中MgCl2的电化学行为和热力学性质. 循环伏安和方波伏安法研究表明镁离子的电化学还原过程为包含了两个电子转移的一步反应. 利用Berzins 和Delahay 方程计算了不同温度下的镁离子的扩散系数, 并通过Arrhenius 公式计算了镁离子在LiCl-KCl 熔盐体系中的扩散活化能. 采用开路计时电位法得到了不同温度下的Mg(II)/Mg(0)体系的平衡电位, 并结合电动势法计算了在LiCl-KCl 熔盐体系中Mg(II)/Mg(0)体系的标准形式电位. 根据不同温度下的标准形式电位, 计算得到了MgCl2在LiCl-KCl 熔盐体系中的熵变和焓变以及不同温度下的活度系数.  相似文献   

5.
在803 K LiCl-KCl熔盐中,研究了通过添加助剂AlCl3直接电化学还原Sm2O3和Al-Sm合金的形成。以SmCl3为原料作为参照,采用循环伏安和方波伏安方法,研究了Sm2O3在LiCl-KCl-AlCl3熔盐体系中的电化学行为。通过对比发现在两个体系中,峰的数量和位置基本一致,这说明在LiCl-KCl熔盐中,加入AlCl3之后,可以将Sm2O3有效氯化。计时电位结果表明,当阴极电流比-139.8 mA.cm-2更负时,Al和Sm共同还原。为了提取Sm,采用恒电流从LiCl-KCl-AlCl3-Sm2O3熔盐中电解得到Al-Sm合金样品,并进行XRD表征,结果表明可以通过调节AlCl3和Sm2O3的浓度得到不同相的Al-Sm合金。  相似文献   

6.
针对镧系元素钕,本文通过循环伏安、开路计时电位、方波伏安等方法研究了773 K时Nd(III)在钼电极上在LiCl-KCl-ZnCl2熔盐体系中的电化学行为及Zn-Nd合金的形成过程.结果表明:在LiCl-KCl-ZnCl2熔盐中,Nd(III)在预先沉积的Zn阴极上欠电位沉积形成三种Zn-Nd金属间化合物.基于电化学行为研究,采用恒电位电解提取Nd并用方波伏安曲线测量来检测Nd(III)离子浓度的变化,然后通过电解前后Nd(III)离子浓度变化评估了Nd的电解提取效率.实验结果表明:-1.84 V恒电位电解进行50 h后,Nd(III)离子浓度接近于零,提取效率为99.67%.在973 K时通过恒电流电解提取Nd并获得了Zn-Nd合金,通过X射线衍射(XRD)和扫描电子显微镜(SEM)附带能量散射谱(EDS)对合金的相组成和微观形貌进行了分析.XRD分析表明在Zn-Nd合金中存在Nd2Zn17,LiZn和Zn相,EDS能谱分析表明Nd在合金中的原子分数高达14.99%.  相似文献   

7.
在1023 K条件下,开展了Zr(IV)在KCl-MgCl2-K2ZrF6和KCl-MgCl2-K2ZrF6-ZrO2熔盐中Mo电极上的电化学实验,并获得如下结果:Zr(IV)还原为Zr(0)是通过两步反应,即Zr(IV)+ 2e- → Zr(II)和Zr(II)+2e- → Zr(0)。两个反应是准可逆的。KCl-MgCl2-K2ZrF6-ZrO2熔盐中的电极反应表明在预沉积的Zr上欠电位沉积Mg可以用来制备Mg-Zr合金。感应耦合离体子体-原子发射光谱(ICP-AES)分析结果表明,在1023 K和KCl-MgCl2-K2ZrF6-ZrO2熔盐中K2ZrF6含量在9.2%(w)条件下,恒电流电解获得的Mg-Zr合金中Zr含量可以达到7.2%(w)。并采用X射线衍射(XRD)和扫描电镜-能谱仪(SEM-EPS)对合金进行表征。利用KCl、MgCl2、K2ZrF6、KF和ZrO2为原料,直接恒电流电解制备Mg-Zr合金是可行的,且在确定反应条件下实现合金中Zr含量可控;揭示了KCl-MgCl2熔盐体系可以实现Mg和Zr的共电沉积,并且验证了直接电解ZrO2获得Mg-Zr合金的可行性。  相似文献   

8.
针对镧系元素钕,本文通过循环伏安、开路计时电位、方波伏安等方法研究了773 K时Nd(Ⅲ)在钼电极上在LiCl-KCl-ZnCl2熔盐体系中的电化学行为及Zn-Nd合金的形成过程. 结果表明:在LiCl-KCl-ZnCl2熔盐中,Nd(Ⅲ)在预先沉积的Zn 阴极上欠电位沉积形成三种Zn-Nd金属间化合物. 基于电化学行为研究,采用恒电位电解提取Nd并用方波伏安曲线测量来检测Nd(Ⅲ)离子浓度的变化,然后通过电解前后Nd(Ⅲ)离子浓度变化评估了Nd的电解提取效率. 实验结果表明:-1.84 V恒电位电解进行50 h后,Nd(Ⅲ)离子浓度接近于零,提取效率为99.67%. 在973 K时通过恒电流电解提取Nd并获得了Zn-Nd合金,通过X射线衍射(XRD)和扫描电子显微镜(SEM)附带能量散射谱(EDS)对合金的相组成和微观形貌进行了分析. XRD分析表明在Zn-Nd合金中存在Nd2Zn17,LiZn 和Zn相,EDS能谱分析表明Nd在合金中的原子分数高达14.99%.  相似文献   

9.
通过循环伏安、方波伏安和开路计时电位等方法研究了723 K时,La(Ⅲ)在LiCl-KCl和LiCl-KClZnCl_2熔盐体系中Mo电极上的电化学行为.结果表明,La(Ⅲ)还原为金属La是一步扩散控制的不可逆还原反应.在LiCl-KCl-ZnCl_2熔盐中,La(Ⅲ)在预先沉积的Zn阴极上欠电位沉积形成4种Zn-La金属间化合物.在923 K时通过恒电流电解获得Zn-La合金,通过X射线衍射(XRD)和扫描电子显微镜(SEM)以及附带的能谱仪(EDS)对合金的相组成和微观形貌进行了分析.采用恒电位电解提取La并用方波伏安曲线检测La(Ⅲ)离子浓度的变化,电解50 h后,La(Ⅲ)离子浓度接近于零,提取效率达到99.55%.  相似文献   

10.
研究了LiCl-KCl-AlCl3-La2O3熔盐体系中共析出制备Al-Li-La合金的可行性。研究表明,在LiCl-KCl熔盐中,AlCl3将La2O3氯化为LaCl3,使电解制备Al-Li-La合金顺利进行。借助循环伏安法对熔盐体系的电化学行为进行分析发现,对质量比为45∶45∶5∶2的LiCl-KCl-AlCl3-La2O3熔盐,当阴极电流密度大于0.25 A/cm2,可以实现Al、Li和La的共析出。通过研究电解温度、阴极电流密度和电解时间对合金组成的影响,得到了较佳的电解参数:电解温度650℃,在LiCl-KCl混合熔盐中加入质量分数为5%的AlCl3和2%的La2O3,阴极电流密度12.5 A/cm2,电解时间1 h。X射线衍射对合金分析测试表明,合金主要由Al2La和βLi组成。  相似文献   

11.
唐勇  廖钦林  郭祥安 《电化学》2013,(4):371-375
采用共沉淀-高温固相烧结法在900oC空气中煅烧,合成了层状复合掺杂型正极材料Li(Ni0.5Co0.2Mn0.3)1-2xTixNbxO2(x=0,0.002,0.005,0.01,0.02).通过扫描电镜(SEM)、X-射线衍射(XRD)和电化学测试等观察与研究掺杂元素对Li(Ni0.5Co0.2Mn0.3)O2的形貌结构和电化学性能的影响.结果表明,适量Ti、Nb掺入Li(Ni0.5Co0.2Mn0.3)O2,降低了材料的阳离子混排程度,且晶胞参数随着掺杂量的增加而增加.与未掺杂材料相比,Ti-Nb复合掺杂的样品具有更好的电性能和高温性能.当x=0.005时,材料的综合性能最好,方型铝壳电池3.0~4.2 V电位区间首次1C放电比容165.9 mAh.g-1,常温循环100周期容量保持率96.5%,55oC循环300周期容量保持率为92.6%,80oC/6 h高温存储后冷却2 h电池厚度膨胀率9.8%.  相似文献   

12.
以醋酸铜(Cu(Ac)2)和正硅酸乙酯(TEOS)为前驱体,柠檬酸钠(Na_3Cit)为配合剂,在室温下制备出物质的量之比n_(Cu~(2+))∶n_(Cit~(3-)) 为1∶1和1∶2的2种透明稳定的Cu(Ⅱ)-Cit~(3-)-SiO_2复合溶胶。以此为电解液,采用恒电位方法,在ITO阴极上直接制备出了Cu_xO-SiO_2复合薄膜。CV(循环伏安)和XRD(X射线衍射)结果表明,在低过电位和高过电位分别得到Cu2_O-SiO_2和Cu/Cu_2O-SiO_2薄膜。XRD和EDX(X射线散射能谱)结果表明,相同沉积条件下,n_(Cu~(2+))∶n_(Cit~(3-)) 为1∶1溶胶中得到的薄膜中Cu含量较1∶2溶胶中的高。薄膜在2种溶胶中的电化学形成机理不同,其原因在于溶胶中Cu(Ⅱ)存在的形式不同。CA(计时安培)和SEM(扫描电镜)结果一致表明,Cu和Cu_2O在2种溶胶中的成核机理与电位有关,随着过电位增大,成核机理从三维连续成核逐渐转向瞬时成核。  相似文献   

13.
以β-Ni0.9Co0.05Mn0.025Mg0.025(OH)2和LiOH.H2O为原料通过高温固相法合成了球形LiNi0.9Co0.05Mn0.025Mg0.025O2。采用热重-差热分析了反应过程,采用X射线衍射和扫描电镜对粉末的结构和形貌进行了表征。采用充放电测试和循环伏安测试对材料电化学性能进行了研究。结果表明:750℃煅烧12 h合成的LiNi0.9Co0.05Mn0.025Mg0.025O2为Li原子混排较少的良好层状结构,二次颗粒尺寸在15μm左右,且具有最高的放电比容量和良好的循环性能,在0.2C,2.8~4.3 V的条件下,首次放电比容量达207 mAh.g-1,40次循环后容量保持率为92.5%。  相似文献   

14.
研究了分别添加纳米和微米级稀土氧化物Yb2O3(%,质量分数)后对La-Mg-Ni系A2B7型储氢合金电极电化学性能的影响。研究结果表明,添加Yb2O3能有效抑制合金电极表面La(OH)3和Mg(OH)2析出,随Yb2O3含量增加,La-Mg-Ni系A2B7型储氢合金电极的循环稳定性提高,但电极放电容量有所降低,电极动力学反应极化增加;Yb2O3粉末颗粒尺寸和团聚状态对合金电极性能影响比较明显,添加纳米级/微米级Yb2O3后均降低了合金电极放电容量,其中微米级Yb2O3对合金电极循环稳定性的改善效果更为明显。合金电极的循环稳定性与其放电过程的截止电位(-0.8~-0.6 V,相对Hg/HgO电极)有关,随截止电位减小,合金腐蚀倾向增加,电极循环寿命变差;Yb2O3在截止电位区间发生的电化学氧化-还原反应与储氢合金电极循环稳定性关系密切。  相似文献   

15.
颜佳伟  商旺火  吴琼  毛秉伟 《电化学》2005,11(2):140-145
本文研究比较Sb(III)在Au(111)和Au(100)电极上的不可逆吸附与还原和Sb的欠电位沉积行为及其相互影响.现场扫描隧道显微镜和循环伏安法测试结果表明,基底表面结构不仅影响阴离子的吸附行为和Sb的吸附结构,而且还影响其自身结构的稳定性.在Au(111)表面,致密无序膜的SbO+不可逆吸附层还原后基本保持原有的无序结构;而在Au(100)表面,由于SO42-的共吸附,不可逆吸附物种还原后形成(2×2)有序结构.在Au(111)表面上,Sb的欠电位沉积伴随显著的合金化,且因表面有序结构的破坏而形成沟道状二维结构;但对Au(100)表面,由于其晶格和尺寸与稳定的AuSb2合金之(100)面有较好的匹配性,使Au与Sb得以形成有序的表面化合物,从而避免了欠电位沉积过程中的表面合金化问题,进一步体现基底结构的敏感性和重要性.  相似文献   

16.
掺杂Mn对CeO2-ZrO2-Al2O3材料性质的影响   总被引:1,自引:1,他引:0  
采用共沉淀法制备了一系列Mn掺杂摩尔分数为0~5%的CeO2-ZrO2-Al2O3(CZA)复合氧化物, 并采用BET, OSC, XRD, XPS, H2-TPR等方法对所制备的材料进行了表征. 结果表明, 所制备的材料均形成了稳定的CZA固溶体, 尤其是Mn掺杂0.5%的材料在600和1000 ℃焙烧后均表现出最好的织构性能. OSC和H2-TPR的结果表明, Mn掺杂量≤1%时, 氧在材料中的体相移动是材料储氧和被还原的速控步骤, 并且Mn的掺杂量为0.2%时, 储氧量最大, 材料的还原温度也最低; Mn掺杂量>1%时, Mn物种对材料储氧和被还原的作用显著. XPS结果表明, Mn在焙烧过程中会迁移向表面, 结合H2-TPR结果可知, 新鲜样品表面的MnOx物种主要为Mn2O3, 而老化样品主要为Mn3O4.  相似文献   

17.
报道了3个2-(羟甲基)-N-甲基咪唑(Hhmmi)桥联的Mn2ⅡMn2Ⅲ四核配合物[Mn4(hmmi)6(DMF)2·(N3)2](ClO4)2(1),[Mn4(hmmi)6(H2O)2(N3)2](ClO4)2(2)和[Mn4(hmmi)6Cl4]·6CH3CN(3·6CH3CN)的合成、晶体结构和磁性. 在配合物1~3中,中心结构皆为四核蝶形混合价Mn结构,2个MnⅡ占据蝶形两翼位置,2个MnⅢ占据蝶形中间位置. MnⅢ离子间通过hmmi-上的μ3-烷氧原子桥联,相应MnⅢ-O-MnⅢ键角为101.3°~103.4°;而MnⅢ-MnⅡ离子间通过hmmi-上的μ3-和μ2-烷氧原子桥联,相应MnⅢ-O-MnⅡ键角为92.5°~113.7°. 对配合物1~3进行变温磁化率拟合,结果表明,MnⅢ-MnⅢ间呈铁磁相互作用,而MnⅢ-MnⅡ间以及Mn4分子间存在较弱的铁磁或反铁磁耦合.  相似文献   

18.
采用电化学沉积法制备了太阳电池用CuInSe2薄膜.利用循环伏安法(CV)、X射线能谱(EDS)和X射线衍射技术(XRD)研究了电沉积过程中CuInSe2的形成机理,并研究了制备工艺对膜层成分、形貌和物相结构的影响.研究结果表明,铟进入固相是通过In3+受Cu3Se2诱导作用欠电势还原或者In3+与H2Se反应这两种途径实现;先沉积的Cu3Se2与新生成的铟或铟硒化合物反应最后生成CuInSe2.在阴极电位为-0.58~-0.9 V(vs.SCE)时出现了不随电位变化的极限还原电流,在该电位范围内进行电沉积获得了化学计量组成稳定可控且相对致密平整的CuInSe2薄膜.电沉积的CuInSe2薄膜经真空退火处理后结晶质量得到明显改善.  相似文献   

19.
在803 K LiCl-KCl熔盐中, 研究了通过添加助剂AlCl3直接电化学还原Sm2O3和Al-Sm合金的形成。以SmCl3为原料作为参照, 采用循环伏安和方波伏安方法, 研究了Sm2O3在LiCl-KCl-AlCl3熔盐体系中的电化学行为。通过对比发现在两个体系中, 峰的数量和位置基本一致, 这说明在LiCl-KCl熔盐中, 加入AlCl3之后, 可以将Sm2O3有效氯化。计时电位结果表明, 当阴极电流比-139.8 mA·cm-2更负时, Al和Sm共同还原。为了提取Sm, 采用恒电流从LiCl-KCl-AlCl3-Sm2O3熔盐中电解得到Al-Sm合金样品, 并进行XRD表征, 结果表明可以通过调节AlCl3和Sm2O3的浓度得到不同相的Al-Sm合金。  相似文献   

20.
乙酰胺-尿素-NaBr熔体中Gd-Ni合金的电化学制备   总被引:7,自引:0,他引:7  
熔盐电解法制取稀土合金功能材料具有低成本等优点.本文选取353 K的乙酰胺-尿素-NaB r熔体,应用循环伏安法研究镍于该熔体(含0.063 mol.L-3N iC l2)、Pt、Cu电极上的还原.实验表明,N i(Ⅱ)+2 eN i(0)是一步完全不可逆反应,测得在Pt上N i(Ⅱ)的传递系数α=0.28,扩散系数D0=4.63×10-5cm2.s-1,Cu上α=0.22,D0=6.05×10-7cm2.s-1.以Cu作基体,Gd(Ⅲ)于该熔体不能单独还原为Gd(0),但可以被N i(Ⅱ)诱导共沉积.由恒电位法电解得到的Gd-N i合金,Gd(0)的含量随电解电位、Gd(Ⅲ)/N i(Ⅱ)摩尔比及电解时间的变化而变化.控制电解电位为-0.75 V,Gd(Ⅲ)/N i(Ⅱ)摩尔比为1∶1,电解20 m in.所得合金膜是非晶态的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号