首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New field data integrated by fission‐track (FT) analysis unravel an innovative scenario for the post‐Variscan evolution of the eastern Anti‐Atlas. This area, unaffected by Meso‐Cenozoic tectonics according to most workers, is crosscut by crustal faults bearing evidence of a polyphase deformation history. Apatite FT ages, ranging between 284 and 88 Ma, point to fast Neogene exhumation and unravel contrasting cooling paths across major faults. Results show that the study area was buried beneath 2 km of allochthonous Variscan units, now eroded. The eastern Anti‐Atlas acted as the southern shoulder of the Atlasic rift in the Mesozoic, and underwent a dextral transpressional structuring of Neogene age followed by sub‐meridian shortening. The southern front of Atlasic deformation is therefore located inside the Anti‐Atlas region, and it is still active.  相似文献   

2.
In North Africa, the High Atlas belt culminates at more than 4000 m. In Morocco, recent work shows that a lithospheric thinning explains about 1000 m of the mean topography, the remaining topography being related to crustal shortening. We combine regional geology with new apatite fission‐track (AFT) ages to constrain the timing of these events in the Marrakech High Atlas (MHA). In the inner belt, 10 AFT ages are comprised between 9 ± 1 and 27 ± 3 Ma. These Neogene ages indicate that the MHA underwent significant denudation during that time. In the southern foreland domain of the belt, three samples give scattered AFT ages between 27 ± 2 and 87 ±5 Ma. Geological evidences allow us to constrain the age of a major denudation event during Middle Miocene age. We propose that it is linked to the thermal doming highlighted in the whole Moroccan Atlas domain.  相似文献   

3.
Apatite fission-track (AFT) data have been obtained along a traverse across the Marrakech High Atlas to constrain its tectono-thermal evolution. AFT ages vary between 212 ± 15 Ma and 20 ± 4 Ma. An Early Miocene AFT age accompanied by long mean track length from the central part of the chain has been interpreted as the timing of the main inversion of this region with the creation of relief because of the shortening induced by the interplay between the African and Eurasian plates. Thermal modelling of samples collected south of the South Atlas Fault Zone indicates a Middle-Late Miocene or even later cooling that has been attributed to the component of the uplift of the chain related to the thermal anomaly present beneath the Atlas Mountains.  相似文献   

4.
An isolated block of Precambrian basement rocks and Mesozoic sediments is exposed at Kella along the western margin of the Central Main Ethiopian Rift (MER), surrounded by Tertiary to Quaternary volcanic rocks. Apatite fission‐track thermochronology on two basement samples yielded ages of 7.2 ± 1.0 Ma and 6.7 ± 3.0 Ma and a long mean track length (>14.5 μm). Rapid Late Miocene cooling is attributed to denudation related to rifting. Despite the paucity of data, due to the absence of suitable lithologies in the area, our data confirm that the Central MER is younger than 8 Ma as recently proposed on the basis of field evidence and radiometric dating of volcanics. This implies that the Central MER formed after the Northern MER, indicating a diachronous development of this third arm of the Red Sea–Gulf of Aden–Ethiopian Rift system. Terra Nova, 00, 000–000, 2010  相似文献   

5.
6.
陈小宇  刘俊来  翁少腾 《岩石学报》2016,32(8):2303-2316
瑶山杂岩是位于哀牢山-红河剪切带(ASRR)上最南端的一个杂岩体,即瑶山-大象山杂岩的中国境内部分。为了揭示杂岩体的低温热演化与浅部剥露历史,并正确理解ASRR变质杂岩的剥露与构造演化,本文开展了杂岩体的宏观构造以及深入的显微构造分析,并在平行杂岩延伸方向上和垂直杂岩延伸方向上进行了磷灰石裂变径迹分析。结果显示,瑶山杂岩作为一个宏观线性穹窿,自渐新世以来经历了多阶段热演化过程。磷灰石的热历史反演结果表明,在约30Ma的时候,瑶山杂岩就已经剥露到距地表4.3km处,继而存在三次抬升过程:30~25Ma,是一个快速的抬升过程,冷却速率为8~8.9℃/Myr;25~12.5Ma,是一个相对缓慢的抬升过程,冷却速率为1.5~1.9℃/Myr;从中新世约13Ma至今,抬升速度又开始加快,但小于第一阶段的速度,冷却速率为3.4~4.1℃/Myr。根据磷灰石裂变径迹年龄的分布,在平行杂岩体的延伸方向上,剥露过程不是整体抬升的,而是一个不均匀的剥露过程;而在垂直杂岩体延伸方向上,是一个整体的均匀的剥露过程。区域尺度上,沿着瑶山-大象山杂岩体延伸方向上,从南东到北西,磷灰石年龄有逐渐变新的趋势,说明剥露具有穿时性;而在瑶山杂岩局部,剥露具有不均匀性,类似于波瓦状剥露特点。  相似文献   

7.
Knowledge of the thermal history of the onshore Dongpu Sag (DPS), Bohai Bay Basin is important for understanding its tectonic development within a broader regional context and for elucidating its poorly studied source‐rock maturation history. To unravel DPS time‐temperature development, apatite fission‐track data were acquired from eight sandstone samples in three deep wells. Thermal history modelling indicates continuous heating during the rifting stage (early Eocene to late Oligocene), followed by cooling attributed to tectonic uplift between ~27 and ~16 Ma, which resulted in the removal of ~1,400 to 1,800 m of section. Reheating occurred during the subsidence stage from middle Miocene until present. Unlike typical passive continental margin basins, the DPS experienced accelerated post‐rifting subsidence from ~5.8 Ma, which was especially marked since ~2.6 Ma. This phase was probably triggered by normal fault reactivation, in combination with a variation in the deep heat flow pattern.  相似文献   

8.
Apatite fission track (AFT) and (U–Th)/He data from the High Atlas have been obtained for the first time to constrain the tectono‐thermal evolution of the central part of the chain. Results from Palaeozoic basement massifs indicate long residence at low temperatures, consistently with their original location out of the deepest Mesozoic rift troughs and indicating minor exhumation. The best rocks for extracting the Alpine history of the Atlas Mountains are Jurassic intrusives, which yield AFT ages centred on c. 80 Ma; thermal models based on AFT data and constrained by (U–Th)/He suggest that these ages are included in a slow cooling trend from intrusion age to c. 50 Ma ago that we attribute to post‐rift thermal relaxation. This is followed by a stability period of c. 30 Ma and then by a final exhumational cooling until present exposure. Eocene intrusives yield AFT ages similar to those of Rb–Sr and K–Ar suggesting rapid emplacement in the uppermost crust.  相似文献   

9.
Southern Africa's topography is distinctive. An inland plateau of low relief and high average elevation is separated from a coastal plane of high relief and low average elevation by a steeply dipping escarpment. The origin and evolution of this topography is poorly understood because, unlike high plateaus elsewhere, its development cannot be easily linked to present day compressional plate boundary processes. Understanding the development of this regional landscape since the break-up of Gondwana is a first order step towards resolving regional epeirogenesis. We present data that quantifies the timing and extent of exhumation across the southern Cape escarpment and coastal plane, using apatite fission track analysis (AFTA) of 25 outcrop samples and 31 samples from three deep boreholes (KW1/67, SA1/66, CR1/68). Outcrop fission track (AFT) ages are Cretaceous and are significantly younger than the stratigraphic ages of their host rocks, indicating that the samples have experienced elevated paleotemperatures. Mean track lengths vary from 11.86 to 14.23 μm. The lack of Cenozoic apatite ages suggests that major cooling was over by the end Cretaceous. The results for three boreholes, situated seaward (south) of the escarpment, indicate an episode of increased denudation in the mid-late Cretaceous (100–80 Ma). An earlier episode of increased denudation (140–120 Ma) is identified from a borehole north of the escarpment. Thermal modelling indicates a history involving 2.5–3.5 km of denudation in the mid-late Cretaceous (100–80 Ma) at a rate of 175 to 125 m/Ma. The AFT data suggest that less than 1 km of overburden has been eroded regionally since the late Cretaceous (< 80 Ma) at a rate of 10 to 15 m/Ma, but do not discount the possibility of minor (in relative amplitude) episodes of uplift and river incision through the Cenozoic. The reasons for rapid denudation in these early and mid-Cretaceous episodes are less clear, but may be related to epeirogenic uplift associated with an increase in mantle buoyancy as reflected in two punctuated episodes of alkaline intrusions (e.g. kimberlites) across southern Africa and contemporaneous formation of two large mafic igneous provinces (~ 130 and 90 Ma) flanking its continental margins. Because Cenozoic denudation rates are relatively minimal, epeirogenic uplift of southern Africa and its distinct topography cannot be primarily related to Cenozoic mantle processes, consistent with the lack of any significant igneous activity across this region during that time.  相似文献   

10.
This study presents the first suite of apatite fission‐track (AFT) ages from the SE part of the Western Sudetes. AFT cooling ages from the Orlica‐?nie?nik Dome and the Upper Nysa K?odzka Graben range from Late Cretaceous (84 Ma) to Early Palaeocene–Middle Eocene (64–45 Ma). The first stage of basin evolution (~100–90 Ma) was marked by the formation of a local extensional depocentre and disruption of the Mesozoic planation surface. Subsequent far‐field convergence of European microplates resulted in Coniacian–Santonian (~89–83 Ma) thrust faulting. AFT data from both metamorphic basement and Mesozoic sedimentary cover indicate homogenous Late Cretaceous burial of the entire Western Sudetes. Thermal history modeling suggests that the onset of cooling could be constrained between 89 and 63 Ma with a climax during the Palaeocene–Middle Eocene basin inversion phase.  相似文献   

11.
石鼓杂岩位于青藏高原东南缘经历了多期变质变形作用叠加。为了揭示杂岩体的低温热演化与浅部剥露历史,采集了石鼓杂岩南段石鼓镇-拉巴支村剖面变质岩中的锆石和磷灰石,开展裂变径迹分析。结果表明,石鼓杂岩从早白垩世(133~145Ma)到渐新世(31Ma)经历了一次缓慢的剥露(1.08℃/Ma),而从渐新世开始,其南部经历了较快速的剥露过程(3.23℃/Ma)。磷灰石热史模拟也反映出第二阶段较为快速的冷却过程。结合区域构造分析认为,拉萨与羌塘板块碰撞的远程效应影响早白垩世以来藏东地区地壳结构的调整,导致石鼓杂岩南部出现了第一阶段的剥露作用;而印度与欧亚板块碰撞与后碰撞过程对于石鼓杂岩的新生代剥露具有重要影响。  相似文献   

12.
Following Appalachian orogenesis, metamorphic rocks in central Newfoundland were exhumed and reburied under Tournaisian strata. New zircon fission‐track (ZFT) ages of metamorphic rocks below the Tournaisian unconformity yield post‐depositionally reset ages of 212–235 Ma indicating regional fluid‐absent reheating to at least ≥220°C. Post‐Tournaisian sedimentary thicknesses in surrounding basins show that burial alone cannot explain such temperatures, thus requiring that palaeo‐geothermal gradients increased to ≥30–40°C/km before final late Triassic accelerated cooling. We attribute these elevated palaeo‐geothermal gradients to localized thermal blanketing by insulating sediments overlying radiogenic high‐heat‐producing granitoids. Late Triassic rifting and magmatism before break up of Pangaea likely also contributed to elevated heat flow, as well as uplift, triggering late Triassic accelerated cooling and exhumation. Thermochronological ages of 240–200 Ma are seen throughout Atlantic Canada, and record rifting and basaltic magmatism on the conjugate margins of the Central Atlantic Ocean preceding the onset of oceanic spreading at ~190 Ma.  相似文献   

13.
14.
The Beni Bousera peridotite massif and its metamorphic surrounding rocks have been analyzed by the fission track (FT) method. The aim was to determine the cooling and uplift history of these mantle and associated crustal rocks after the last major metamorphic event that dates back to the Lower Miocene–Upper Oligocene time (~22–24 Ma). The zircon FT analyses give an average cooling—i.e., below 320 °C—age of ~19.5 Ma. In addition, the apatite FT data give an average cooling—i.e., below 110 °C—age of ~15.5 Ma. Taking into account the thermal properties of the different thermochronological systems used in this work, we have estimated a rate of cooling close to 50 °C/Ma. This cooling rate constrains a denudation rate of about ~2 mm year?1 from 20 to 15 Ma. These results are similar to those determined in the Ronda peridotite massif of the Betic Cordilleras documenting that some ultrabasic massifs of the internal zones of the two segments of the Gibraltar Arc have a similar evolution. However, Burdigalian sediments occur along the Betic segment (Alozaina area, western Betic segment) unconformably overlying peridotite. At this site, ultramafic rock was exposed to weathering at ages ranging from 20.43 to 15.97 Ma. Since the Beni Bousera peridotite was still at depth until 15.5 Ma, we infer that no simple age projection from massif to massif is possible along the Gibraltar Arc. Moreover, the confined fission track lengths data reveal that a light warming (~100 °C) has reheated the massif during the Late Miocene before the Pliocene–Quaternary tectonic uplift.  相似文献   

15.
Between the Qiangtang Block and Yalung-Zangpo Suture Zone in the south-central Tibetan Plateau, the following geological units and suture zones have been identified from south to north: the Gangdese Granitic Belt, the Lhasa Block, the Nyainqentanghla Shear Zone, the Dangxiong–Sangxiong Tectono-granitic Belt and the Bangong–Nujiang Suture Zone. To better constrain the tectonic evolution and cooling histories of these units, 40Ar/39Ar muscovite, biotite and K-feldspar, as well as apatite fission track dating and thermochronological analysis have been carried out. The analytical results indicate that the south-central Tibetan Plateau, with the exception of the Nyainqentanghla Shear Zone, provides a record of three cooling stages at 165–150, 130–110 and ∼45–35 Ma. Fission-track data modelling also indicates that the stages of cooling were different in the different tectonic belts or blocks. Very different cooling phases occurred in the south-central Tibetan Plateau, compared with southern Tibet, as well as along the Yalung–Zangpo Suture Zone. There is no thermochronological evidence to indicate that the south-central part of Tibetan Plateau was influenced by the underthrusting of Indian Plate.The three-stage cooling history and the stages of tectonic exhumation were controlled completely by the closure of the Bangong–Nujiang Suture Zone along its eastern segment during Middle–Late Jurassic (165–150 Ma) and its western segment in the Early–Late Cretaceous (130–110 Ma), as well as by the collision between the Indian and Asian plates in the Paleogene (45–35 Ma).  相似文献   

16.
17.
New fission‐track ages on zircon and apatite (ZFT and AFT) from the south‐western internal Alps document a diachronous cooling history from east to west, with cooling rates of 15–19 °C Ma−1. In the Monviso unit, the ZFT ages are 19.6 Ma and the AFT ages are 8.6 Ma. In the eastern Queyras, ZFT ages range from 27.0 to 21.7 Ma and AFT ages from 14.2 to 9.4 Ma. In the western Queyras, ZFT ages are between 94.7 and 63.1 Ma and AFT ages are between 22.2 and 22.6 Ma. The Chenaillet ophiolite yields ages of 118.1 Ma on ZFT and 67.9 Ma on AFT. The combination of these new FT data with the available petrological and geochronological data emphasize an earlier exhumation in subduction context before 30 Ma, then in collision associated with westward tilting of the Piedmont zone.  相似文献   

18.
The Tafilalt is one of a number of generally unexplored sub‐basins in the eastern Anti‐Atlas of Morocco, all of which probably underwent a similar tectono‐stratigraphic evolution during the Palaeozoic Era. Analysis of over 1000 km of 2‐D seismic reflection profiles, with the interpretation of ten regional seismic sections and five isopach and isobath maps, suggests a multi‐phase deformation history for the Palaeozoic‐aged Tafilalt sub‐basins. Extensional phases were probably initiated in the Cambrian, followed by uniform thermal subsidence up to at least the end of the Silurian. Major extension and subsidence did not begin prior to Middle/Upper Devonian times. Extensional movements on the major faults bounding the basin to the north and to the south took place in synchronisation with Upper Devonian sedimentation, which provides the thickest part of the sedimentary sequence in the basin. The onset of the compressional phase in Carboniferous times is indicated by reflectors in the Carboniferous sequence progressively onlapping onto the Upper Devonian sequence. This period of compression developed folds and faults in the Upper Palaeozoic‐aged strata, producing a structural style characteristic of thin‐skinned fold and thrust belts. The Late Palaeozoic units are detached over a regional décollement with a northward tectonic vergence. The folds have been formed by the process of fault‐propagation folding related to the thrust imbricates that ramp up‐section from the décollement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This study uses zircon and apatite fission‐track (FT) analyses to reveal the exhumation history of the granitoid samples collected from the Lesser Hinggan Mountains, northeast China. A southeast to northwest transect across the Lesser Hinggan Mountains yielded zircon FT ages between 89.8 ± 5.7 and 100.4 ± 8.6 Ma, and apatite FT ages between 50.6 ± 13.8 and 74.3 ± 4.5 Ma with mean track lengths between 11.7 ± 2.0 and 12.8 ± 1.7 µm. FT results and modelling identify three stages in sample cooling history spanning the late Mesozoic and Cenozoic eras. Stage one records rapid cooling from the closure temperature of zircon FT to the high temperature part of the apatite FT partial annealing zone (∼210–110 °C) during ca. 95 to 65 Ma. Stage two records a period of relative slow cooling (∼110–60 °C) taking place between ca. 65 and 20 Ma, suggesting that the granitoids had been exhumed to the depth of ∼1−2 km. Final stage cooling (60–20 °C) occurred since the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. The maximum exhumation is more than 5 km under a steady‐state geothermal gradient of 35 °C/km. Integrated with the tectonic setting, this exhumation is possibly led by the Pacific Plate subduction combined with intracontinental orogeny associated with asthenospheric upwelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Apatite fission track thermochronology (AFT) is used to investigate the low-temperature thermal evolution of the Crimean Mountains and provide new insights into the geodynamic and geomorphic evolution of the westernmost tip of the Caucasus–Crimean fold-and-thrust belt. The vast majority of the samples taken from Jurassic sedimentary and magmatic rocks revealed AFT ages in the range of 51–32 Ma. These ages, together with modelled cooling paths, show that the mountain range experienced a thermal overprint after the Late Cimmerian orogeny. We interpret the overprint in terms of the burial of Cimmerian structures by a thick pile (>4 km) of platform sediments during Early Cretaceous–Late Eocene times. This scenario implies that highly elevated palaeosurfaces of Early Cretaceous age survived in large part because of the protection provided by thick accumulations of platform deposits. Since final uplift in the middle Pliocene, the palaeosurfaces have been significantly degraded and dissected by fluvial incision and large-scale landslides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号