首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 In order to dissect the complex genetic system that controls pollen development, we have undertaken a program of transposon insertion mutagenesis, with the purpose of producing mutations in gametophytically acting genes that are important for this process. The present work reports the developmental cytology of one of the mutants isolated, gaMS-2 (gametophytic male sterile-2). A peculiar feature of the mutant grains was lack of differentiation between the vegetative and the generative nuclei, leading to alteration in number, conformation and placement of nuclei. At anthesis, the grains carrying the mutant allele are about 40% of the normal grain size, contain a very reduced amount of starch and exhibit various nuclear abnormalities. Received: 31 May 1996 / Revision accepted: 26 August 1996  相似文献   

2.
 Somatic hybridization between Solanum commersonii and S. tuberosum resulted in the production of male-sterile hybrid plants, except for one fully male-fertile hybrid. The male-sterile hybrids exhibited a“pollen-less” phenotype, with rare pollen grains which were abnormal in shape and exine sculpture. Microsporogenesis and tapetal development were investigated both in male-sterile and male-fertile somatic hybrids to assess the cytological events that were involved in male sterility. The pattern of male sterility was complex, arising through mechanisms expressed at both sporophytic and gametophytic levels. Various abnormalities occurred first in the tapetum, and later during meiosis-II and cytokinesis. These caused the degeneration of the sporads and of the microspores when they were released. In the male-fertile hybrid, normal development of the tapetum and pollen mother cells was restored. The hypothesis that tapetal breakdown, meiosis-II and cytokinesis defects are related to each other, and depend on nuclear-mitochondrial interactions, is discussed. Because of the formation of multivalent chromosome configurations, it is likely that gene exchange between S. commersonii and S. tuberosum can occur in somatic hybrids, offering potential perspectives for the introgression of useful traits from S. commersonii into S. tuberosum. Received: 10 December 1996/Accepted: 21 March 1997  相似文献   

3.
  In the male sterile32(ms32)mutant in Arabidopsis thaliana, pollen development is affected during meiosis of pollen mother cells (PMCs). In normal wild-type (WT) anthers, callose is deposited around PMCs before and during meiosis, and after meiosis the tetrads have a complete callose wall. In ms32, PMCs showed initial signs of some callose deposition before meiosis, but it was degraded soon after, as was part of the cellulosic wall around the PMCs. The early dissolution of callose in ms32 was associated with the occurrence of extensive stacks of rough ER (RER) in tapetal cells. The stacks of RER were also observed in the WT tapetum, but at a later stage, i.e., after the tetrads were formed and when callose is normally broken down for release of microspores. Based on these observations it is suggested that: (1) callose degradation around developing microspores is linked to the formation of RER in tapetal cells, which presumably synthesize and/or secrete callase into the anther locule, and (2) mutation in MS32 disrupts the timing of these events. Received: 27 April 1999 / Revision accepted: 21 June 1999  相似文献   

4.
Identification of maize silicon influx transporters   总被引:1,自引:1,他引:0  
Maize (Zea mays L.) shows a high accumulation of silicon (Si),but transporters involved in the uptake and distribution havenot been identified. In the present study, we isolated two genes(ZmLsi1 and ZmLsi6), which are homologous to rice influx Sitransporter OsLsi1. Heterologous expression in Xenopus laevisoocytes showed that both ZmLsi1 and ZmLsi6 are permeable tosilicic acid. ZmLsi1 was mainly expressed in the roots. By contrast,ZmLsi6 was expressed more in the leaf sheaths and blades. Differentfrom OsLsi1, the expression level of both ZmLsi1 and ZmLsi6was unaffected by Si supply. Immunostaining showed that ZmLsi1was localized on the plasma membrane of the distal side of rootepidermal and hypodermal cells in the seminal and crown roots,and also in cortex cells in lateral roots. In the shoots, ZmLsi6was found in the xylem parenchyma cells that are adjacent tothe vessels in both leaf sheaths and leaf blades. ZmLsi6 inthe leaf sheaths and blades also exhibited polar localizationon the side facing towards the vessel. Taken together, it canbe concluded that ZmLsi1 is an influx transporter of Si, whichis responsible for the transport of Si from the external solutionto the root cells and that ZmLsi6 mainly functions as a Si transporterfor xylem unloading.  相似文献   

5.
 Maize (Zea mays L.) callus cultures cannot use mannose as a sole carbohydrate source, but can utilize fructose for that purpose. Phosphomannose isomerase (PMI) can convert mannose to fructose. Transgenic maize plants were obtained by selecting polyethylene glycol (PEG)-mediated transformed protoplasts on mannose (20 g/l) containing medium. Transgenic calluses and plants carrying the PMI structural gene, manA, were able to convert mannose to fructose. The PEG-mediated protoplast transformation frequency was 0.06%. Stable transformation was confirmed by PCR, PMI activity, germination tests, and by histochemical staining with 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-Gluc). Stable integration of the transgenes into the maize genome was demonstrated in T1 and T2 plants. Results indicate that the mannose selection system can be used for maize PEG-mediated protoplast transformation. Received: 12 July 1999 / Revision received: 11 October 1999 / Accepted: 11 October 1999  相似文献   

6.
7.
DNA introduction into cells is an essential technique for molecular genetic analysis. Here, we show that DNA is easily introduced into cells of the unicellular red alga Cyanidioschyzon merolae by a polyethylene glycol (PEG)-mediated protocol. In this study, the beta-tubulin gene of C. merolae was cloned on a plasmid and a hemagglutinin (HA) tag then added at the C-terminus. This plasmid was then introduced into C. merolae cells by a PEG-mediated transformation protocol. At 24 h after PEG-mediated transformation, intracellular localization of the tagged protein was detected by anti-HA immunocytochemistry, indicating the utility of this transient expression system for molecular genetic analyses.  相似文献   

8.
Molecular marker diversity among current and historical maize inbreds   总被引:25,自引:0,他引:25  
Advanced-cycle pedigree breeding has caused maize (Zea mays L.) inbreds to become more-elite but more-narrow genetically. Our objectives were to evaluate the genetic distance among current and historical maize inbreds, and to estimate how much genetic diversity has been lost among current inbreds. We selected eight maize inbreds (B14, B37, B73, B84, Mo17, C103, Oh43 and H99) that largely represented the genetic background of current elite inbreds in the U.S. seed industry. A total of 32 other inbreds represented historical inbreds that were once important in maize breeding. Cluster analysis of the inbreds, using data for 83 SSR marker loci, agreed well with pedigree information. Inbreds from Iowa Stiff Stalk Synthetic (BSSS), Reid Yellow Dent, and Lancaster clustered into separate groups with only few exceptions. The average number of alleles per locus was 4.9 among all 40 inbreds and 3.2 among the eight current inbreds. The reduction in the number of alleles per locus was not solely due to sample size. The average genetic distance (D ij ) was 0.65 among the eight current inbreds, 0.67 among the 32 historical inbreds, and 0.67 among all 40 inbreds. These differences were statistically insignificant. We conclude that genetic diversity among current inbreds has been reduced at the gene level but not at the population level. Hybrid breeding in maize maintained, rather than decreased, genetic diversity, at least during the initial subdivision of inbreds into BSSS and non-BSSS heterotic groups. We speculate, however, that exploiting other germplasm sources is necessary for sustaining long-term breeding progress in maize. Received: 21 August 2000 / Accepted: 5 January 2001  相似文献   

9.
10.
Four morphological sex-related mutants in maize (Zea mays L.) are described. Three have arisen in materials containing transposons and one (Mn::Uq) is known to be segregating with a transposon. The Mn::Uq and the RSS affect pollen activity, fw affects tassel silking, and ba4 lacks ear initials. These mutants have been studied by genetic means, and some interactions between double mutants have been investigated. Received: 15 December 2000 / Accepted: 30 April 2001  相似文献   

11.
Actin coronas in normal and indeterminate gametophyte1 embryo sacs of maize   总被引:2,自引:2,他引:0  
 The actin cytoskeletal organization and nuclear behavior of normal and indeterminate gametophyte1 (ig1) embryo sacs of maize were examined during fertilization. After pollination, during degeneration of one of the synergids and before arrival of the pollen tube, the cytoskeletal elements undergo dramatic changes including formation of the actin coronas at the chalazal end of the degenerating synergid and at the interface between the egg cell and central cell. The actin coronas are present only for a limited period of time and their presence is coordinated with pollen tube arrival and fusion of the gametes; they disappear before the zygote divides. This allows us to estimate the frequency of fertilized ovules along the ear. Up to 88% of the ovules on an ear contain actin coronas in the embryo sacs when observed 16–19 h after pollination, indicating the high frequency of fertilizing kernels along the ear at this stage. In the ig embryo sacs, two or more degenerated synergids containing actin coronas at their chalazal ends receive multiple pollen tubes for gametic fusion and can consequently give rise to twin or polyembryos. These findings with the monocot maize are consistent with previous reports on the dicots Plumbago and Nicotiana, suggesting that the formation of actin coronas in the embryo sac during fertilization is a universal phenomenon in angiosperms and is part of a mechanism of interaction between gametic signaling and actin cytoskeleton behavior which appears to precisely position and facilitate the access of male gametes to the egg cell and central cell for fusion. Received: 15 May 1998 / Revision accepted: 17 August 1998  相似文献   

12.
The plastid gene psbC encodes the CP43 subunit of PSII. Most psbC mRNAs of many organisms possess two possible initiation codons, AUG and GUG, and their coding regions are generally annotated from the upstream AUG. Using a chloroplast in vitro translation system, we show here that translation of the tobacco plastid psbC mRNA initiates from the GUG. This mRNA possesses a long Shine-Dalgarno (SD)-like sequence, GAGGAGGU, nine nucleotides upstream of the GUG. Point mutations in this sequence abolished translation, suggesting that a strong interaction between this extended SD-like sequence and the 3' end of 16S rRNA facilitates translation initiation from the GUG.  相似文献   

13.
Hu X  Zhang A  Zhang J  Jiang M 《Plant & cell physiology》2006,47(11):1484-1495
The histochemical and cytochemical localization of water stress-induced H(2)O(2) production in the leaves of ABA-deficient vp5 mutant and wild-type maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine and CeCl(3) staining, respectively, and the roles of endogenous ABA in the production of H(2)O(2) induced by water stress were assessed. Water stress induced by polyethylene glycol resulted in the accumulation of H(2)O(2) in mesophyll cells, bundle-sheath cells and vascular bundles of wild-type maize leaves, and the accumulation was substantially blocked in the mutant maize leaves exposed to water stress. Pre-treatments with several apoplastic H(2)O(2) manipulators abolished the majority of H(2)O(2) accumulation induced by water stress in the wild-type leaves. The subcellular localization of H(2)O(2) production was demonstrated in the cell walls, xylem vessels, chloroplasts, mitochondria and peroxisomes in the leaves of wild-type maize plants exposed to water stress, and the accumulation of H(2)O(2) induced by water stress in the cell walls and xylem vessels, but not in the chloroplasts, mitochondria and peroxisomes, was arrested in the leaves of the ABA mutant or the ABA biosynthesis inhibitor (tungstate)-pre-treated maize plants. Pre-treatments with the apoplastic H(2)O(2) manipulators also blocked the apoplastic but not the intracellular H(2)O(2) accumulation induced by water stress in the leaves of wild-type plants. These data indicate that under water stress, the apoplast is the major source of H(2)O(2) production and ABA is a key inducer of apoplastic H(2)O(2) production. These data also suggest that H(2)O(2) generated in the apoplast could not diffuse freely into subcellular compartments.  相似文献   

14.
Effects of water stress on male gametophyte development in plants   总被引:1,自引:0,他引:1  
 Male reproductive development in plants is highly sensitive to water deficit during meiosis in the microspore mother cells. Water deficit during this stage inhibits further development of microspores or pollen grains, causing male sterility. Female fertility, in contrast, is quite immune to stress. The injury is apparently not caused by desiccation of the reproductive tissue, but is an indirect consequence of water deficit in the vegetative organs, such as leaves. The mechanism underlying this stress response probably involves a long-distance signaling molecule, originating in the organs that undergo water loss, and affecting fertility in the reproductive tissue, which conserves its water status. Much research has been focused on the involvement of abscisic acid in this regard, but the most recent evidence tends to reject a role for this hormone in the induction of male sterility. Stress-induced arrest of male gametophyte development is preceded by disturbances in carbohydrate metabolism and distribution within anthers, and an inhibition of the key sugar-cleaving enzyme, acid invertase. Since invertase gene expression can be modulated by sugar concentration, it is possible that decreased sugar delivery to reproductive tissue upon inhibition of photosynthesis by stress is the signal that triggers metabolic lesions leading to failure of male gametophyte development. Received: 31 October 1996 / Revision accepted: 18 February 1997  相似文献   

15.
Two types of segments (intact leaf tissue and isolated mesophyll tissue respectively) were isolated from basal (still growing) and tip (non-growing) maize leaf regions. The leaf segments were exposed to different light qualities (blue or red light) and quantities, and net fluxes of K+, Ca2+ and H+ were measured non-invasively using ion-selective vibrating microelectrodes (the MIFE technique). A clear dose dependency of all ion flux responses on both red (RL) and blue (BL) light fluence rate was found. We provide evidence that light-induced K+ flux kinetics are different between growing and non-growing tissues and attribute this difference to the direct involvement of RL-induced K+ flux in turgor-driven leaf expansion growth controlled by the epidermis, as well as to the charge-balancing role of K+ in the leaf mesophyll. Generally, BL was much more efficient in stimulating K+ uptake in the growing basal region compared with RL. We also show a much stronger influence of RL on Ca2+ fluxes in the basal region compared with BL, which argues in favor of the importance of RL in Ca2+ signaling during leaf growth.  相似文献   

16.
The jasmonate-induced expression of the Nicotiana tabacum leaf lectin   总被引:1,自引:0,他引:1  
Previous experiments with tobacco (Nicotiana tabacum L. cv Samsun NN) plants revealed that jasmonic acid methyl ester (JAME) induces the expression of a cytoplasmic/nuclear lectin in leaf cells and provided the first evidence that jasmonates affect the expression of carbohydrate-binding proteins in plant cells. To corroborate the induced accumulation of relatively large amounts of a cytoplasmic/nuclear lectin, a detailed study was performed on the induction of the lectin in both intact tobacco plants and excised leaves. Experiments with different stress factors demonstrated that the lectin is exclusively induced by exogeneously applied jasmonic acid and JAME, and to a lesser extent by insect herbivory. The lectin concentration depends on leaf age and the position of the tissue in the leaf. JAME acts systemically in intact plants but very locally in excised leaves. Kinetic analyses indicated that the lectin is synthesized within 12 h exposure time to JAME, reaching a maximum after 60 h. After removal of JAME, the lectin progressively disappears from the leaf tissue. The JAME-induced accumulation of an abundant nuclear/cytoplasmic lectin is discussed in view of the possible role of this lectin in the plant.  相似文献   

17.
RFLP markers have proven to be a reliable and highly informative tool for characterizing genetic diversity in maize. Joint analysis of inbred lines and populations should provide valuable information with respect to (1) a better understanding of the genetic basis of present elite germplasm and (2) the identification of populations that may prove to be useful sources of genetic diversity for breeding programs. Sixty-two inbred lines of known heterotic groups and ten maize populations, some of them significant contributors to the genetic basis of the heterotic groups, were assayed at 28 RFLP loci. Joint data analyses first underlined that the populations displayed a large number of alleles that were absent in the set of inbred lines. Associations among inbreds and populations further proved consistent with pedigree data of the inbreds and provided new information on the genetical basis of heterotic groups. In particular, European flint inbreds were revealed to be as close to the Northeastern U.S. flint population studied as to the typical European populations. These results advocate the analysis of larger sets of populations by means of molecular markers in order to (1) gain insight into the history of maize germplasm and (2) set up appropriate strategies for the use of genetic resources in breeding programs. Received: 23 February 1998 / Accepted: 5 February 1999  相似文献   

18.
19.
A male-sterile mutant of Arabidopsis thaliana, in which filament elongation was defective although pollen fertility was normal, was isolated by means of T-DNA tagging. Transmission electron microscopy (TEM) analysis revealed that primexine synthesis and probacula formation, which are thought to be the initial steps of exine formation, were defective, and that globular sporopollenin aggregation was randomly deposited onto the microspore at the early uninucleate microspore stage. Sporopollenin aggregation, which failed to anchor to the microspore plasma membrane, was deposited on the locule wall and in the locule at the uninucleate microspore stage. However, visually normal exine with a basic reticulate structure was observed at the middle uninucleate microspore stage, indicating that the exine formation was restored in the mutant. Thus, the mutant was designated transient defective exine 1 (tde1). These results indicated that tde1 mutation affects the initial process of the exine formation, but does not impair any critical processes. Our results also suggest the existence of a certain factor responsible for exine patterning in A. thaliana. The TDE1 gene was found to be identical to the DE-ETIOLATED 2 gene known to be involved in brassinosteroid (BR) biosynthesis, and the tde1 probacula-defective phenotypes were recovered in the presence of BR application. These results suggest that BRs control the rate or efficiency of initial process of exine pattern formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号