首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
报道了一款采用三级放大结构的Ku波段高效率GaN功率放大器芯片。放大器设计中通过电路布局优化改善功放芯片内部相位一致性,提高末级晶胞的合成效率,最终实现整个放大器功率及效率的提升。经匹配优化后放大器在14.6~17.0GHz频带内脉冲输出功率大于20 W,功率附加效率大于36%,最高39%。功率放大器芯片采用0.25μm GaN HEMT 101.6mm(4英寸)圆片工艺制造,芯片尺寸为2.3mm×1.9mm。  相似文献   

2.
基于SiC衬底0.25μm GaN HEMT工艺,设计实现了一款C波段、高效率和高线性的单片微波集成电路(MMIC)功率放大器。通过优化电路匹配结构,选择合适的有源器件和恰当的直流偏置条件,实现低视频漏极阻抗;利用后级增益压缩和前级增益扩张对消等手段,实现高功率附加效率和好的线性指标。功率放大器芯片尺寸为2.35 mm×1.40 mm。芯片测试结果表明,在3.7~4.2 GHz频率范围内,漏极电压28 V、末级栅极电压-2.2 V、前级栅极电压-1.8 V和连续波条件下,该功率放大器的小信号增益大于25 dB,大信号增益大于20 dB,饱和输出功率大于39 dBm,在输出功率回退至32 dBm时,功率附加效率大于30%,三阶交调失真小于-37 dBc。  相似文献   

3.
采用0.25μm栅长GaN高电子迁移率晶体管(HEMT)工艺,研制了一款Ku波段高输出功率放大器单片微波集成电路(MMIC)。在器件结构上,通过优化场板尺寸参数提高器件的击穿电压,提升了其静态工作电压。在电路设计上,优化匹配结构以实现输出功率和效率的最佳匹配。测试结果表明,在14~16 GHz,功率放大器MMIC实现了饱和输出功率大于100 W,功率附加效率大于40%。该48 V Ku波段GaN功率放大器MMIC具有高电压、大功率、高效率的特点,具有广阔的应用前景。  相似文献   

4.
报道了一款基于0.25μm GaN HEMT工艺的C波段75 W高效率功率放大器MMIC。为提高功率增益,芯片的整体拓扑结构设计为三级。在末级输出匹配电路上设计了一个高效电抗式匹配拓扑,在末级管芯输入匹配电路上运用了谐波控制技术,同时利用GaN HEMT器件大信号模型来优化驱动比,通过这三种技术途径有效提高了芯片的附加效率。为扩展工作带宽及提高稳定性,其他匹配电路采用有耗匹配方式。在漏压28 V、脉宽100μs、占空比10%的工作条件下,芯片在4.8~6.0 GHz频带范围内,典型输出功率达到75 W(最高81 W),增益大于25.5dB,附加效率大于51%(最高55%),芯片面积为3.8 mm×5.5 mm。  相似文献   

5.
基于1.6μm InP DHBT工艺,研制了一款MMIC高线性功率放大器。功率放大器采用两级结构,两级管芯皆偏置在AB类状态。功率放大器末级采用RC等效模型进行非线性匹配降低损耗,管芯基极采用自适应线性偏置技术提高线性度和温度稳定性。该芯片的尺寸为2.0 mm×2.9 mm。装壳测试结果表明,在25.5~28.5 GHz频带内,饱和输出功率为23 dBm;经双音测试,输出功率回退2.5 dB后IMD3小于-30 dBc。  相似文献   

6.
刘如青  张力江  魏碧华  何健 《半导体技术》2021,46(7):521-525,564
基于GaNHEMT工艺,研制了一款W波段功率放大器MMIC.利用Lange耦合器将3个饱和输出功率大于1 W的单元电路进行三路片上功率合成来实现该功率放大器MMIC.该芯片的制作采用了 0.1 μm T型栅GaN HEMT技术,衬底为50 μm厚的SiC.芯片为三级级联拓扑结构,采用高低阻抗传输线、介质电容等进行匹配和偏置电路设计,实现低损耗输出,芯片尺寸为3.37 mm×3.53 mm×0.05 mm.测试结果表明,在漏源工作电压15 V、88~92 GHz频率范围内,该MMIC的线性增益大于15 dB,饱和输出功率大于3W.该MMIC具有功率大、输入输出回波损耗小及应用范围广的优势.  相似文献   

7.
刘如青  刘帅  高学邦  付兴中 《半导体技术》2021,46(8):599-603,634
以50 μm厚的SiC为衬底,基于T型栅GaN HEMT工艺技术,设计并制作了一款V波段GaN功率放大器单片微波集成电路(MMIC).该功率放大器MMIC电路采用三级放大拓扑结构进行设计;采用高低阻抗微带传输线进行阻抗匹配和片上功率合成;采用介质电容和薄膜电阻进行偏置网络设计,实现稳定工作和低损耗输出.经测试,在55~65 GHz频带内,漏极工作电压+20V、栅极工作电压-2.3 V的偏置条件下,在占空比20%、脉宽100 μs脉冲状态时,该功率放大器MMIC的饱和输出功率达到3 W以上,功率附加效率达到22%;连续波状态时,其饱和输出功率达到2.5 W以上,60 GHz时最高功率达到3 W.  相似文献   

8.
采用SiC衬底0.25 μm AlGaN/GaN高电子迁移率晶体管工艺,研制了一款S波段GaN单片微波集成电路(MMIC)Doherty功率放大器,在回退的工作状态下仍可以保持较高的效率,可用于小型基站。为减小芯片尺寸,采用无源集总元件替代四分之一阻抗变换线;在输入端没有采用功分器加相位补偿线的结构,而是设计了一种集总结构的电桥来提高集成度。脉冲测试表明,在3~3.2 GHz频率范围内,饱和输出功率大于10 W,在回退6 dB处的功率附加效率(PAE)为38%,芯片尺寸为4.0 mm×2.4 mm。  相似文献   

9.
突破了GaN MMIC功率放大器的设计、制造、测试等关键技术,研制成功X波段GaN MMIC功率放大器。设计及优化了电路拓扑结构及电路参数,放大器芯片采用了国产外延材料及标准芯片制作工艺。单片功率放大器包含两级放大电路,采用了功率分配及合成匹配电路,输入输出阻抗均为50Ω。制作了微波测试载体及夹具,最终实现了X波段GaN MMIC功率放大器微波参数测试。在8.7~10.9 GHz频率范围内,该功率放大器输出功率大于16 W,功率增益大于14 dB,增益波动小于0.4 dB,输入驻波比小于2∶1,功率附加效率大于40%,带内效率最高达52%。  相似文献   

10.
报道了一款采用0.15μm GaN功率MMIC工艺研制的功率放大器芯片。芯片工作在5G毫米波候选频段24.75~27.50GHz,采用三级放大结构。结合小信号参数和带有预匹配的Load-pull进行设计,末级匹配电路使用宽带匹配拓扑,在满足输出功率的条件下,尽可能降低损耗并兼顾效率匹配,以提升芯片附加效率;使用RCL稳定网络提高电路的稳定性,优化级间网络的版图布局提高功率分配网络和合成网络的幅相一致性;在输入级使用有耗匹配以降低芯片输入驻波。芯片在漏级电压24V连续波工作条件下,在24.5~27.5GHz范围内饱和输出功率大于34dBm(2.5 W),附加效率25%~30%。  相似文献   

11.
刘世中  桑磊 《微电子学》2018,48(6):748-752
针对宽带单片微波集成电路(MMIC)功率放大器在匹配过程中存在电路枝节复杂、优化周期较长的问题,采用了低Q值多节LC匹配网络的方法,并结合阻抗在Smith圆图上的变化趋势,能快速确定输出级阻抗匹配网络的结构。基于0.25 μm GaN HEMT工艺,设计了一种S波段 MMIC功率放大器。采用多节LC电抗匹配单元,快速准确地设计了匹配电路,简化了电路设计流程。仿真结果表明,在2~4 GHz工作频率范围内,输出功率大于38 dBm,功率附加效率为29%~48.8%,功率增益为19.0~20.4 dB,S11小于-7.7 dB,S22小于-9.2 dB。芯片尺寸为3 mm×1.7 mm。该功率放大器具有较高的实用价值。  相似文献   

12.
采用ADS软件对一种高线性GaN功率放大器进行匹配电路设计,并制作了一款超小尺寸的高线性放大电路。该电路采用0.254 mm厚的Al2 O3陶瓷作为基板,放大晶体管选用无封装芯片,在5 mm ×6 mm的小尺寸范围内完成电路制作。制作的小尺寸高线性放大电路实现了在输入双音信号频率为4 G Hz和4.002 G Hz、输出总功率为2 W时,三阶互调抑制35 dBc ,功率附加效率35%。  相似文献   

13.
采用GaAsPHEMT工艺,设计了一种700 MHz频段的高线性驱动放大器MMIC.该放大器内部集成了带通复合匹配网络结构的宽带输入匹配电路,通过两种幅频特性相反的匹配网络进行组合,有效地拓展了应用带宽,提高了线性度和增益平坦度.放大电路采用两级放大结构,保证增益指标,引入稳定性设计以保证放大器工作的稳定性.偏置电路采用带负反馈系统的有源镜像结构,提高了驱动能力,使电路更加稳定.该放大器集成输出检波器,采用二极管检波器结构实现功率检波,具有结构简单、占用芯片面积小的优点.该放大器典型频点700 MHz处的输出三阶交调点为42.6 dBm,1 dB压缩点输出功率为27.6 dBm.通过调整片外输出匹配电路可满足700 MHz及其他频段的应用需求.  相似文献   

14.
15.
Ku波段宽带氮化镓功率放大器MMIC   总被引:1,自引:0,他引:1       下载免费PDF全文
余旭明  洪伟  王维波  张斌 《电子学报》2015,43(9):1859-1863
基于0.25μm栅长GaN HEMT工艺,采用三级放大拓扑结构设计了一款Ku波段GaN功率放大器.放大器设计从建立大信号模型出发,输出匹配网络和级间匹配网络均采用电抗匹配减小电路的损耗,从而提高整体放大器的功率效率.测试结果表明,该放大器在14.6~18GHz频带内,小信号增益30dB,脉冲饱和输出功率达15W,功率附加效率(PAE)大于32%;在14.8GHz频点处,放大器的峰值功率达19.5W,PAE达39%.该结果表明GaN MMIC具有高频高功率高效率的优势,具有广阔的应用前景.  相似文献   

16.
基于自主开发的100 nm GaN高电子迁移率晶体管(HEMT)工艺,研制了一款工作频段覆盖E波段(60~90 GHz)的宽带高功率放大器芯片.放大器采用密集通孔结构的共源极晶体管,降低寄生效应,提高器件的高频增益.同时采用三级级联拓扑结构,结合紧凑的微带线宽带匹配电路,在60~92 GHz频率范围内,典型线性增益达到...  相似文献   

17.
研制了Ku波段多级功率放大器。该放大器采用难度大但尺寸小的级间共用匹配电路方式进行级间匹配。达到指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号