首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metallurgical and mechanical properties of Sn–3.5 wt%Ag–0.5 wt%Bi–xwt%In (x = 0–16) alloys and of their joints during 85 °C/85% relative humidity (RH) exposure and heat cycle test (−40–125 °C) were evaluated by microstructure observation, high temperature X-ray diffraction analysis, shear and peeling tests. The exposure of Sn–Ag–Bi–In joints to 85 °C/85%RH for up to 1000 h promotes In–O formation along the free surfaces of the solder fillets. The 85°C/85%RH exposure, however, does not influence the joint strength for 1000 h. Comparing with Sn–Zn–Bi solders, Sn–Ag–Bi–In solders are much stable against moisture, i.e. even at 85 °C/85%RH. Sn–Ag–Bi–In alloys with middle In content show severe deformation under a heat cycles between −40 °C and 125 °C after 2500 cycles, due to the phase transformation from β-Sn to β-Sn + γ-InSn4 or γ-InSn4 at 125 °C. Even though such deformation, high joint strength can be maintained for 1000 heat cycles.  相似文献   

2.
The interfacial reactions and growth kinetics of intermetallic compound (IMC) layers formed between Sn–0.7Cu (wt.%) solder and Au/Ni/Cu substrate were investigated at aging temperatures of 185 and 200 °C for aging times of up to 60 days. After reflow, the IMC formed at the interface was (Cu, Ni)6Sn5. After aging at 185 °C for 3 days and at 200 °C for 1 day, two IMCs of (Cu, Ni)6Sn5 and (Ni, Cu)3Sn4 were observed. The growth of the (Ni, Cu)3Sn4 IMC consumed the (Cu, Ni)6Sn5 IMC at an aging temperature of 200 °C due to the restriction of supply of Cu atoms from the solder to interface. After aging at 200 °C for 60 days, the Ni layer of the substrate was completely consumed in many parts of the sample, at which point a Cu3Sn IMC was formed. In the ball shear test, the shear strength decreased with increasing aging temperature and time. Until the aging at 185 °C for 15 days and at 200 °C for 3 days, fractures occurred in the bulk solder. After prolonged aging treatment, fractures partially occurred at the (Cu, Ni)6Sn5 + Au/solder interface for aging at 185 °C and at the (Ni, Cu)3Sn4/Ni interface for aging at 200 °C, respectively. Consequently, thick IMC layer and thermal loading history significantly affected the integrity of the Sn–0.7Cu/Ni BGA joints.  相似文献   

3.
The microstructures and shear strength of the interface between Sn–Zn lead-free solders and Au/Ni/Cu interface under thermal aging conditions was investigated. The intermetallic compounds (IMCs) at the interface between Sn–Zn solders and Au/Ni/Cu interface were analyzed by field emission scanning electron microscopy and transmission electron microscopy. The results showed the decrease in the shear strength of the interface with aging time and temperature. The solder ball with highly activated flux had about 8.2% increased shear strength than that with BGA/CSP flux. Imperfect wetting and many voids were observed in the fracture surface of the latter flux. The decreased shear strength was influenced by IMC growth and Zn grain coarsening. In the solder layer, Zn reacted with Au and then was transformed to the β-AuZn compound. Although AuZn grew first, three diffusion layers of γ-Ni5Zn21 compounds were formed after aging for 600 h at 150 °C. The layers divided by Ni5Zn21 (1), (2), and (3) were formed with the thickness of 0.7 μm, 4 μm, and 2 μm, respectively.  相似文献   

4.
In terms of various reflow time and temperature, an analysis of Cu–Sn intermetallic compound (IMC) layer reliability is presented in this paper. Temperature cycling test data reported in existing publications for the solder paste material of 63Sn/37Pb eutectic alloy is used to model the probability distribution functions of solder joint lifetime due to the IMC layer fatigue. The relationship of the IMC layer thickness as a function of reflow time and temperature is studied. A reliability and mean time to failure function of the IMC layer in terms of various reflow time and temperature are presented. Calculation suggests that to achieve a higher IMC layer reliability, a shorter reflow time and a lower reflow temperature should be used, while lowering reflow temperature may be more efficient than controlling reflow time. In general, a reflow temperature ranged by 240–280 °C should be avoided. For a specified reliability goal, how to choose proper reflow time and temperature is discussed.  相似文献   

5.
Due to today’s trend towards ‘green’ products, the environmentally conscious manufacturers are moving toward lead-free schemes for electronic devices and components. Nowadays the bumping process has become a branch of the infrastructure of flip chip bonding technology. However, the formation of excessively brittle intermetallic compound (IMC) between under bump metallurgy (UBM)/solder bump interface influences the strength of solder bumps within flip chips, and may create a package reliability issue. Based on the above reason, this study investigated the mechanical behavior of lead-free solder bumps affected by the solder/UBM IMC formation in the duration of isothermal aging. To attain the objective, the test vehicles of Sn–Ag (lead-free) and Sn–Pb solder bump systems designed in different solder volumes as well as UBM diameters were used to experimentally characterize their mechanical behavior. It is worth to mention that, to study the IMC growth mechanism and the mechanical behavior of a electroplated solder bump on a Ti/Cu/Ni UBM layer fabricated on a copper chip, the test vehicles are composed of, from bottom to top, a copper metal pad on silicon substrate, a Ti/Cu/Ni UBM layer and electroplated solder bumps. By way of metallurgical microscope and scanning-electron-microscope (SEM) observation, the interfacial microstructure of test vehicles was measured and analyzed. In addition, a bump shear test was utilized to determine the strength of solder bumps. Different shear displacement rates were selected to study the time-dependent failure mechanism of the solder bumps. The results indicated that after isothermal aging treatment at 150 °C for over 1000 h, the Sn–Ag solder revealed a better maintenance of bump strength than that of the Sn–Pb solder, and the Sn–Pb solder showed a higher IMC growth rate than that of Sn–Ag solder. In addition, it was concluded that the test vehicles of copper chip with the selected Ti/Cu/Ni UBMs showed good bump strength in both the Sn–Ag and Sn–Pb systems as the IMC grows. Furthermore, the study of shear displacement rate effect on the solder bump strength indicates that the analysis of bump strength versus thermal aging time should be identified as a qualitative analysis for solder bump strength determination rather than a quantitative one. In terms of the solder bump volume and the UBM size effects, neither the Sn–Ag nor the Sn–Pb solders showed any significant effect on the IMC growth rate.  相似文献   

6.
Reliable interconnects are essential for microelectronic systems intended for long life times in harsh environment applications. Intermetallic growth accelerates as the temperature increases, and the material system must be carefully selected to avoid mechanically and/or electrically weak connections. The dominating chip metallization is aluminium, and aluminium wire-bonding is therefore recommended to obtain a mono-metallic system at chip level. A suitable substrate metallization compatible with aluminium wire-bonds at high temperatures (HT) should therefore be found.Test substrates with low temperature co-fired ceramic (LTCC) silver conductors plated with nickel/gold, gold and aluminium thin film, gold thick film, and silver thick film plated with copper/nickel/gold have been manufactured. Wedge/wedge aluminium wire-bonding were performed with 25 μm aluminium wire on the substrates before they were subjected to long term ageing at temperatures up to 250 °C for 6-12 months. Bond-pull strength and electrical resistance were measured during ageing on selected components.The present work shows that long term reliable aluminium wire-bonds for 250 °C operation is feasible both with thin film, thick film and LTCC substrate technology. For the screen-printed conductors, a plating system with nickel is necessary. Aluminium wire bonded to gold thin film displays reliable long term high temperature performance for gold thicknesses up to ∼1 μm.  相似文献   

7.
Sn-Ag-Cu composite solders reinforced with nano-sized, nonreacting, noncoarsening 1 wt% TiO2 particles were prepared by mechanically dispersing TiO2 nano-particles into Sn-Ag-Cu solder powder and the interfacial morphology of the solder and flexible BGA substrates were characterized metallographically. At their interfaces, different types of scallop-shaped intermetallic compound layers such as Cu6Sn5 for a Ag metallized Cu pad and Sn-Cu-Ni for a Au/Ni and Ni metallized Cu pad, were found in plain Sn-Ag-Cu solder joints and solder joints containing 1 wt% TiO2 nano-particles. In addition, the intermetallic compound layer thicknesses increased substantially with the number of reflow cycles. In the solder ball region, Ag3Sn, Cu6Sn5 and AuSn4 IMC particles were found to be uniformly distributed in the β-Sn matrix. However, after the addition of TiO2 nano-particles, Ag3Sn, AuSn4 and Cu6Sn5 IMC particles appeared with a fine microstructure and retarded the growth rate of IMC layers at their interfaces. The Sn-Ag-Cu solder joints containing 1 wt% TiO2 nano-particles consistently displayed a higher hardness than that of the plain Sn-Ag-Cu solder joints as a function of the number of reflow cycles due to the well-controlled fine microstructure and homogeneous distribution of TiO2 nano-particles which gave a second phase dispersion strengthening mechanism.  相似文献   

8.
In this study, we used microstructure evolution and electron microprobe analysis (EPMA) to investigate the interfacial reactions in Sn-Zn and Sn-Zn-Al solder balls with Au/Ni surface finish ball-grid-array (BGA) bond pad over a period of isothermal aging at 150°C. During reflow, Au dissolved into the solder balls and reacted with Zn to form γ-Au3Zn7 and γ2-AuZn3. As aging progressed, γ and γ2 transformed into γ3-AuZn4. Finally, Zn precipitated out next to γ3-AuZn4. The Zn reacted with the Ni layer to form Ni5Zn21. A thin layer (Al, Au, Zn) intermetallic compound (IMC) formed at the interface of the Sn-Zn-Al solder balls, inhibiting the reaction of Ni with Zn. Even after 50 days of aging, no Ni5Zn21 was observed. Instead, fine (Al, Au, Zn) particles similar to Al2 (Au, Zn) in composition formed and remained stable in the solder. The lower ball shear strength corresponded with the brittle fracture morphology in Sn-Zn-Al solder ball samples.  相似文献   

9.
This paper examines various aspects of SAC (Sn–3.8Ag–0.7Cu wt.%) solder and UBM interactions which may impact interconnection reliability as it scales down. With different solder joint sizes, the dissolution rate of UBM and IMC growth kinetics will be different. Solder bumps on 250, 80 and 40 μm diameter UBM pads were investigated. The effect of solder volume/pad metallization area (V/A) ratio on IMC growth and Ni dissolution was investigated during reflow soldering and solid state isothermal aging. Higher V/A ratio produced thinner and more fragmented IMC morphology in SAC solder/Ni UBM reflow soldering interfacial reaction. Lower V/A ratio produced better defined IMC layer at the Ni UBM interface. When the ratio of V/A is constant, the IMC morphology and growth trend was found to be similar. After 250 h of isothermal aging, the IMC growth rate of the different bump sizes leveled off. No degradation in shear strength was observed in these solder bump after 500 h of isothermal aging.  相似文献   

10.
We examine electromigration fatigue reliability and morphological patterns of Sn–37Pb and Sn–3Ag–1.5Cu/Sn–3Ag–0.5Cu composite solder bumps in a flip–chip package assembly with Ti/Ni(V)/Cu UBM. The flip–chip test vehicle was subjected to test conditions of five combinations of applied electric currents and ambient temperatures, namely, 0.4 A/150 °C, 0.5 A/150 °C, 0.6 A/125 °C, 0.6 A/135 °C, and 0.6 A/150 °C. The electrothermal coupling analysis was employed to investigate the current crowding effect and maximum temperature in the solder bump in order to correlate with the experimental electromigration reliability using the Black’s equation as a reliability model. From available electromigration reliability models, we also present a comparison between fatigue lives of Sn–37Pb solder bumps with Ti/Ni(V)/Cu and those with Al/Ni(V)/Cu UBM under different current stressing conditions.  相似文献   

11.
Thermal fatigue damage of flip chip solder joints is a serious reliability concern, although it usually remains tolerable with the flip chip connections (of smaller chips) to ceramic boards as practiced by IBM for over a quarter century. However, the recent trend in microelectronics packaging towards bonding large chips or ceramic modules to organic boards means a larger differential thermal expansion mismatch between the board and the chip or ceramic module. To reduce the thermal stresses and strains at solder joints, a polymer underfill is customarily added to fill the cavity between the chip or module and the organic board. This procedure has typically at least resulted in an increase of the thermal fatigue life by a factor of 10, as compared to the non-underfilled case. In this contribution, we first discuss the effects of the underfill to reduce solder joint stresses and strains, as well as underfill effects on fatigue crack propagation based on a finite element analysis. Secondly, we probe the question of the importance of the effects of underfill defects, particularly that of its delamination from the chip side, on the effectiveness of the underfill to increase thermal fatigue life. Finally, we review recent experimental evidence from thermal cycling of actual flip chip modules which appears to support the predictions of our model.  相似文献   

12.
Au/Ni metallization has become increasingly common in microelectronic packaging when Cu pads are joined with Pb-Sn solder. Recent work has shown that a ternary compound with stoichiometry Au0.5Ni0.5Sn4 redeposits onto the interface during aging, compromising the strength of the joint. In the present work the growth of the Au0.5Ni0.5Sn4 layer is documented and methods for inhibiting its growth were investigated. It was determined that multiple reflows, both with and without additional aging, can substantially limit the thickness of the ternary layer.  相似文献   

13.
Since both Ag and In are important melting point depressants in Sn–Zn based solders, a series Sn–Zn based solders with various amounts of Ag and In additions was studied in the experiment. The melting behavior of solder alloys, wetting characteristics, coefficients of thermal expansion, microstructural evolution and long-term reliability of the selected Sn–Zn based solder on Au/Ni–P metallized copper substrate were examined. Based on the experimental result, there is little change in the melting range of Sn–Zn based solder alloys by minor addition of Ag. On the contrary, the melting point of Sn–Zn based alloys can be effectively decreased by In additions. However, the difference between solidus and liquidus temperature is broadened as the increment of In into Sn–Zn based solders. 76Sn–9Zn–15In has the lowest liquidus temperature among all alloys, and it can effectively bond the Au/Ni–P metallized copper substrate. The microstructure of 76Sn–9Zn–15In alloy soldered at 200 °C for 20 min is primarily comprised of Sn–In γ phase and needle-like ZnO2. Since there is no flux usage during soldering, zinc oxide cannot be avoided even the process performed under 2×10−2 mbar vacuum environment. It is also noted that there is no interfacial reaction layer between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate after soldering. However, there is a reaction layer between 76Sn–9Zn–15In and substrate as the soldered specimen aged at 90 °C for 168 h. Its chemical composition is close to Zn-rich γ phase (NiZn3) alloyed with minor Sn, In, Cu and P. For the specimen further aged at 90 °C for 336 h, there are cracks along the interface between solder alloy and electroless Ni–P layer. The oxidation of the interfacial Zn-rich γ phase plays an important role in deterioration of the bonding between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate.  相似文献   

14.
PCB对封装行业来说,最关键的莫过不同元器件和PCB之间的热膨胀系数(CTE)匹配性问题。其中FCRGA封装,通过倒装芯片实现芯片焊料凸点与FCBGA基板的直接连接,在FCBGA类产品中可实现较高的封装密度,获得更优良的电性能和热性能。但由于PCB与芯片之间cTE的不匹配,而导致FCBGA焊点的可靠性问题。本文就CTE影响FCBGA焊点可靠性展开讨论。  相似文献   

15.
In this study, addition of Ag micro-particles with a content in the range between 0 and 4 wt.% to a Sn–Zn eutectic solder, were examined in order to understand the effect of Ag additions on the microstructural and mechanical properties as well as the thermal behavior of the composite solder formed. The shear strengths and the interfacial reactions of Sn–Zn micro-composite eutectic solders with Au/Ni/Cu ball grid array (BGA) pad metallizations were systematically investigated. Three distinct intermetallic compound (IMC) layers were formed at the solder interface of the Au/electrolytic Ni/Cu bond pads with the Sn–Zn composite alloys. The more Ag particles that were added to the Sn–Zn solder, the more Ag–Zn compound formed to thicken the uppermost IMC layer. The dissolved Ag–Zn IMCs formed in the bulk solder redeposited over the initially formed interfacial Au–Zn IMC layer, which prevented the whole IMC layer lifting-off from the pad surface. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces.  相似文献   

16.
The evolution of intermetallics at and near SnAgCu/Cu and SnAgCu/Ni interfaces was examined, and compared to the behavior, near PbSn/metal and Sn/metal interfaces. Two different solder compositions were considered, Sn93.6Ag4.7Cu1.7 and Sn95.5Ag3.5Cu1.0 (Sn91.8Ag5.1 Cu3.1 and Sn94.35Ag3.8Cu1.85 in atomic percent). In both cases, phase formation and growth at interfaces with Cu were very similar to those commonly observed for eutectic SnPb solder. However, the evolution of intermetallics at SnAgCu/Ni interfaces proved much more complex. The presence of the Cu in the solder dramatically altered the phase selectivity at the solder/Ni interface and affected the growth kinetics of intermetallics. As long as sufficient Cu was available, it would combine with Ni and Sn to form (Cu,Ni)6)Sn5 which grew instead of the Ni3Sn4 usually observed in PbSn/Ni and Sn/Ni diffusion couples. This growing phase would, however, eventually consume essentially all of the available Cu in the solder. Because the mechanical properties of Sn-Ag-Cu alloys, depend upon the Cu content, this consumption can be expected to alter the mechanical properties of these Pb-free solderjoints. After depletion of the Cu from the solder, further annealing then gradually transformed the (Cu,Ni)6Sn5 phase into a (Ni,Cu)3Sn4 phase.  相似文献   

17.
The effects of the functionality of an epoxy monomer on the composite properties and reliability of anisotropic conductive films (ACFs) in a flip-chip package were investigated. Three epoxy monomers with different functionalities (f=2–4) were considered. The ACFs prepared using epoxy monomers with higher functionality resulted in lower molecular weight between crosslinks (Mc). As the Mc decreased, the elastic modulus (E′) and coefficient of thermal expansion (CTE) were improved. These results were highly consistent with the rubber elasticity theory. The reliability performance of the flip chip on organic substrate assemblies using ACFs were also investigated as a function of epoxy functionality. The ACFs prepared by using higher functional epoxy monomers showed improved reliability performance.  相似文献   

18.
Temperature cycling of a test board with different electronic components was carried out at two different temperature profiles in a single-chamber climate cabinet. The first temperature profile ranged between −55 and 100 °C and the second between 0 and 100 °C. Hole mounted components and secondary side SMD components were wave soldered with an Sn–3.5Ag alloy. Joints of both dual in line (DIL) packages and ceramic chip capacitors were investigated. Crack initiation and propagation was analysed after every 500 cycles. In total, 6500 cycles were run at both temperature profiles and the observations from each profile were compared.For both kinds of components analysed, cracks were first visible for the temperature profile ranging between −55 and 100 °C. For this temperature profile, and for DIL packages, cracks were visible already after 500 cycles, whereas for the other temperature profile, cracks initiated between 1000 and 1500 cycles. The cracks observed after 1500 cycles were visibly smaller for the temperature profile ranging between 0 and 100 °C, concluding that crack initiation and propagation was slightly slower for this temperature profile. For the chip capacitors, cracks were first visible after 2000 cycles.  相似文献   

19.
The impact toughness evaluation and fracture mechanism analysis in board level of Sn–3mass%Ag–0.5mass%Cu solder joints of ball grid arrays (BGAs) using electrolysis Ni/Au plating were performed. The cause of impact toughness degradation of BGA solder ball joints is the segregation of impurities to the (Cu, Ni)$_{6}$Sn$_{5}$ intermetallic compound grain boundary formed in the solder joints. The impurities, consisting of Cl and organic matters, are taken in the Ni plating film at the time of Ni plating. The organic matter impurities come primarily from the solder mask of the BGA interposer substrates. To improve the impact toughness of the Sn–3mass%Ag–0.5mass%Cu solder joint of the BGA, it is necessary to lower the concentration of these impurities. This, in turn, places importance on solder mask material selection (to minimize Ni plating bath contamination) as well as contamination prevention and plating bath sanitization.   相似文献   

20.
The bottom-leaded plastic (BLP) package is a lead-on-chip type of chip scale package (CSP) developed mainly for memory devices. Because the BLP package is one of the smallest plastic packages available, solder joint reliability becomes a critical issue. In this study, a 28-pin BLP package is modeled to investigate the effects of molding compound and leadframe material properties, the thickness of printed circuit board (PCB), the shape of solder joint and the solder pad size on the board level solder joint reliability. A viscoplastic constitutive relation is adopted for the modeling of solder in order to account for its time and temperature dependence on thermal cycling. A three-dimensional nonlinear finite element analysis based on the above constitutive relation is conducted to model the response of a BLP assembly subjected to thermal cycling. The fatigue life of the solder joint is estimated by the modified Coffin-Manson equation. The two coefficients in the modified Coffin-Manson equation are also determined. Parametric studies are performed to investigate the dependence of solder joint fatigue life on various design factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号