首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cooling system of an injection mold is important for the promotion of production rate and the quality of injection plastic components. Conformal cooling channels are newly developed temperature-adjusting method to promote the efficiency of cooling system. They can be made in the injection mold inserts via the method of indirect selective laser sintering combined with traditional powder metallurgy. This work discussed some processes such as thermal transmission, powders removing, and metal melt infiltration during the manufacturing of the mold inserts in detail. The result showed that redundant powders outside of laser-scanned areas might be sintered together with the sintered parts owing to the accumulation of laser energy during sintering process. This was solved by switching the temperature to initial level after one layer had been sintered. A limit length corresponding to some certain power vacuum system was found when the removal of unsintered powders in the cooling channels was carried out. Therefore, some subsidiary channels leading the cooling channels outside were made to help the removal of powders within the cooling channels. Dripping method was adopted during metal melt infiltration process, which was proven to be relevant for maintaining of the final shape of infiltrated inserts.  相似文献   

2.
采用倍福高性能、全软件式架构的工业PC,设计了一种高性能激光选区熔化设备的控制系统.该控制系统主要包括人机界面模块、工业PC模块、运动逻辑控制模块、激光振镜扫描模块和气氛控制模块,以倍福PLC为控制核心,基于倍福的EtherCAT新型分布时钟同步技术,保证设备的高效和高精度控制.并通过QT软件平台,开发实用、多功能集成...  相似文献   

3.
基于选择性激光烧结生物陶瓷复合粉体的工艺研究   总被引:1,自引:0,他引:1  
主要研究了复相陶瓷Al2O3-ZrO2-SiO2单层烧结工艺,采用Nd:YAG激光器通过选择性激光烧结(SLS)成型复相陶瓷Al2O3-ZrO2-SiO2,实现了在不添加粘结剂、不作任何后处理的情况下激光束完全熔化样品。采用试验设计法系统地分析了激光烧结各项工艺参数对单层烧结质量的影响。利用SEM、XRD分析了不同工艺参数下单层烧结的显微结构以及对试样性能的影响,并通过试验确定最优工艺参数。而后,分别研究了t-ZrO2相对复合粉体的增韧效果与莫来石对改善零件强度所起的作用,对改善零件整体寿命和可靠性有着重要的意义。  相似文献   

4.
Nanocomposites produced through the addition of carbon nanotubes to a polymeric matrix can improve the material properties. The mobility of the polymer chains is usually affected, and this is also related to the properties. Parts produced with the free-form fabrication process using the selective laser sintering (SLS) technique can be used in different high-performance applications as they do not require expensive tools for their manufacture. A specific field of interest is the aerospace industry which is characterized by a low production volume and the need for materials with a high performance to weight ratio. In this study, the free-form fabrication by SLS of parts made from nanocomposites comprised of polyamide 12 and multiwalled carbon nanotubes (MWCNTs) was investigated. Specimens were manufactured by SLS to identify the appropriate processing parameters to achieve high mechanical properties for aerospace applications. Laser energy density was adjusted to improve the material density, flexural modulus, and stress at 10 % elongation. Design of experiments was used to identify and quantify the effects of various factors on the mechanical properties. The results obtained showed that there was a limit to the amount of MWCNTs which could be mixed with the polyamide powder to improve the mechanical properties since a higher content affected the laser sintering process.  相似文献   

5.
The property of alloy parts can be adjusted conveniently if alloy element powders are used for manufacturing alloy parts by indirect selective laser sintering (SLS), but there have been no reports in this field. Fe, Cu, Ni, C composite powders of two compositions were obtained through a 3D blending way in this paper. Green parts of above composite powder were manufactured by indirect SLS. Then, Cu matrix Fe-Cu-Ni-C alloy composites were produced after green parts had been depolymerized, high temperature sintered and infiltrated by molten Cu. The post-processing of green parts, microstructure and mechanical properties of alloy composites were investigated. The results show: Ni, Cu and C diffuse into γ-Fe when green parts are being sintered at high temperature and the distributing non-uniformity of alloy elements is eliminated basically; at room temperature, alloy composite microstructures are composed of lower bainite, α-Cu precipitated out of γ-Fe and Fe-Ni after they have been solution treated at 930°C and held at 350°C for 1 h later; the yield strength of alloy composites is near to 400 MPa and the elongation is under 3%. It can be used for manufacturing injection mold or other functional parts by indirect SLS.  相似文献   

6.

Recently, the adaptive network-based fuzzy inference system (ANFIS) has been used extensively in modeling of manufacturing processes to save both optimization time and manufacturing costs. ANFIS is a powerful iterative tool for optimizing non-linear and multivariable manufacturing operations. In the present study, ANFIS is used to predict the optimum manufacturing parameters in selective laser sintering (SLS) of cement-filled polyamide 12 (PA12) composite. For this purpose, a set of cement-filled PA12 test specimens is manufactured by SLS technique with 8 different values of laser power (4.5–8 Watt) and 8 different weight fractions of white cement (5 %–40 %). Mechanical characterization of cement-filled PA12 is carried out to evaluate the ultimate tensile strength (UTS), compressive strength, and flexural properties. The experimental data are then divided into two groups; one group for training the ANFIS model and the other group for checking the validity of the identified model. The built ANFIS model was validated experimentally and comparison with experimental results revealed mean relative errors of 2.92 %, 3.84 %, 4.75 %, and 3.31 % in the predictions of UTS, compressive strength, flexural modulus, and flexural yield strength, respectively.

  相似文献   

7.
当不同方向扫描成形时,采用相同的扫描间距而忽视非圆光斑各向异性的影响,是造成金属快速成形件内部缺陷的一个重要原因.在不更换或调整原有硬件设备的情况下,采用变扫描间距法(即在不同方向上采用不同的扫描间距)与层间正交变向往复扫描相结合,实验结果表明试件的表面质量、成形精度和内部质量都有显著提高.  相似文献   

8.
A multifactorial model is proposed for the surface microgeometry after selective laser sintering of metal powder. The dependence of the microgeometry on the following dominant factors is established: the laser power, the speed of the laser beam, and the scanning increment.  相似文献   

9.
Selective laser sintering (SLS) is an attractive rapid prototyping (RP) technology capable of manufacturing parts from a variety of materials. However, the wider application of SLS has been limited, due to their accuracy. This paper presents an optimal method to determine the best processing parameter for SLS by minimizing the shrinkage. According to the nonlinear and multitudinous processing parameter feature of SLS, the theory and the algorithms of the neural network are applied for studying SLS process parameters. The process is modeled and described by neural network based on experiment. Moreover, the optimum process parameters, such as layer thickness, hatch spacing, laser power, scanning speed, work surroundings temperature, interval time, and scanning mode are obtained by adopting the genetic algorithm based on the neural network model. The optimum process parameters will be benefit for RP users in creating RP parts with a higher level of accuracy.  相似文献   

10.
To improve the final density of ceramic parts via indirect selective laser sintering (SLS), cold/hot isostatic pressing (CIP/HIP) technologies were introduced into the process. The proposed approach in the present study combined spray drying with mechanical mixing by which we prepared a kind of compound powder consisting of polyvinyl alcohol (PVA, 1.5 wt%), epoxy resin E06 (8 wt%), and alumina so as to get a good fluidity for SLS. At the first step, SLS parts reached the highest relative density of about 32 % when the laser energy density was 0.094 J/mm2, which facilitated the next operation and improvement of final density. Then, a soft polymer canning was prepared for CIP around the surface of SLS alumina ceramic parts using pre-vulcanized natural rubber latex RTV-2, gelation and film. Following that, we experimented on different CIP maximum pressure which had different effects on densification of SLS alumina parts, the whole process in CIP was divided into three stages of I, II, and III. Based on thermal gravity curve of epoxy resin E06, ignoring the impacts of the only 1.5 wt% PVA on degreasing, green bodies were degreased and furnace-sintered. Finally, the relative density of alumina parts reached 95.94 % after HIP process. Field emission scanning electron microscopy was used to analyze the densification evolvement in each stage of process and the fracture mechanism. The study showed a positive and practical approach to manufacture ceramic matrix and ceramic components with complex shape by indirect SLS technology.  相似文献   

11.
A numerical approach to model the selective laser sintering (SLS) of polypropylene is proposed. A 3D thermal model was developed and thus enables the prediction of the temperature fields and the extension of the sintered area in the powder bed taking into account the phase change during multiple laser passes. Powder–liquid, liquid–solid and solid–liquid phase changes were modelled during the SLS and the subsequent cooling processes. Then, a 3D thermomechanically coupled model was set up based on the temperature results of the thermal model in order to predict the distortion of the produced parts after cooling down. Different pre-heating temperatures were considered, highlighting their influence on the final part properties.  相似文献   

12.
金属粉末选择性激光烧结技术研究进展   总被引:1,自引:0,他引:1  
选择性激光烧结技术是一种新型的制造技术,是对传统制造技术的重要补充。系统论述金属粉末激光烧结技术的国内外发展现状进行,介绍了间接法和直接法两种典型的金属粉末激光烧结技术,总结了目前该领域中所取得的成果及存在问题,并对金属粉末激光烧结技术的发展进行了展望。  相似文献   

13.
研究了基于数字化3D技术的全膝置换股骨假体再设计并通过激光选区熔化(SLM)技术直接制造了股骨假体,以满足医学上对全膝置换股骨假体的高适配性要求。对一名患者的全膝关节CT连续断层图像提取股骨3D模型,根据骨科医生手术规划进行了数字化3D解剖与测量,并据此对目前商业化的假体进行了重新设计。然后,利用SLM技术直接制造了再设计完成的3D股骨假体模型,并讨论了制造工艺参数、机械性能、空间优化摆放位置以及成型精度等关键技术。实验结果显示:依据患者股骨远端解剖参数可完成股骨假体的3D模型再设计并可利用SLM技术直接制造出股骨假体,单个股骨假体成型时间为5.2h,成型精度标准偏差为0.030mm,成型致密度达到99.02%;热处理后成型性能优于美国实验材料学会(ASTM)F75的铸造标准。得到的结果表明该项技术可以快速制造完成患者所需要的股骨假体,且成型性能优良。  相似文献   

14.
Poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (nano-HAP) composite porous scaffolds with well-controlled pore architectures as well as high exposure of the bioactive ceramics to the scaffold surface were fabricated via selective laser sintering. Neat PLGA and the composite of PLGA/nano-HAP were used to obtain suitable process parameters. The effects of nano-HAP content on the microstructure and mechanical properties were investigated. The testing results showed that the compressive strength and modulus of the scaffolds were highly enhanced when the nano-HAP content reached from 0 to 20 wt%, while the mechanical properties experienced a sharp dropped with the nano-HAP content further increased. This might be due to the large reduction in polymer which decreased the interface bond strength between particles. It suggests that the introduction of nano-HAP as a reinforcing phase can improve the mechanical properties of the polymer porous scaffolds. The novel developed scaffolds may serve as a three-dimensional bone substrate in tissue engineering.  相似文献   

15.
Additive manufacturing (AM) has proliferated in recent years and is displacing traditional manufacturing methods in numerous applications due to improvements in process efficiencies and cost reductions related to the evolving AM processes. This study explores the cost structure and break-even points of AM versus traditional methods. The comparative analysis examined the cost requirements of AM versus injection molding to manufacture various lot sizes of parts. Break-even points based on lot sizes and the relationship to the overall cost structure were also calculated. This research concludes that break-even points may be calculated based on part mass, density, and lot size.  相似文献   

16.
研究了激光选区烧结(SLS)成型工艺中不同工艺参数以及后续热处理工艺对超高分子量聚乙烯(UHMWPE)材料成型性能的影响。通过调整扫描间距、激光功率、扫描速度等不同工艺参数,描述了SLS成型UHMWPE零件的致密度、拉伸强度以及断裂伸长率,并对热处理前后的SLS成型UHMWPE零件的力学性能进行了比较。结果显示,致密度、拉伸强度、断裂伸长率总体上与激光功率呈正相关关系,与扫描间距、扫描速度呈负相关关系。经热处理后,SLS成型UHMWPE零件的力学性能有明显提高,致密度达到95.12%,抗拉强度达到24.08 MPa,断裂伸长率达到334.82 MPa。实验结果表明:SLS成型UHMWPE零件与模塑成型UHMWPE零件性能尚有差距,仅优化成型工艺不足以得到理想性能,但经热处理后,零件性能基本满足使用要求。  相似文献   

17.
Electrical discharge machining (EDM) is a nonconventional machining process widely applied for the manufacture of intricate shapes in hard materials which are not easily machined by conventional machining processes. The production of geometrically complex EDM electrodes is difficult, time consuming, and it can account for about 50 % of the total process costs. Selective laser sintering (SLS) can be an alternative technique to produce EDM electrodes in a faster way. This work conducted an experimental study on the performance of EDM electrodes made by SLS using pure copper, bronze–nickel alloy, copper/bronze–nickel alloy, and steel alloy powders. Important EDM performance measures such as material removal rate and volumetric relative wear were investigated and discussed for finishing, semifinish, and roughing regimes. This work contributes with an insight into the production of EDM electrodes via selective laser sintering, as an alternative technique to conventional machining processes, as well as to evaluate the performance of the electrodes, and also provide directions for future research on this field.  相似文献   

18.
Effect of delay time on part strength in selective laser sintering   总被引:1,自引:1,他引:0  
Selective laser sintering (SLS) is one of the most popular layered manufacturing processes used for making functional prototypes of polymers and metals. It is a powder-based process in which layers of powder are spread and laser is used to sinter selected areas of preheated powder. In the present work, experimental investigations have been made to understand effect of delay time on SLS prototypes. Delay time is the time difference for laser exposure between any two adjacent points on successive scanning lines on a layer. Tensile specimens of polyamide material as per the ASTM standard are fabricated on SLS machine keeping delay time range constant for the entire specimen. Specimens are fabricated for different ranges of delay time and tested on universal testing machine for tensile strength. An optimum value of delay time range is obtained experimentally. As delay time depends on part build orientation, an algorithm has been developed and implemented to find out optimum part build orientation for improving tensile strength. The obtained results from developed code are validated experimentally for tensile specimen. Case study for a typical 3D part is also presented to demonstrate the capabilities of developed algorithm.  相似文献   

19.
Hydroxyapatite, a ceramic with which natural bone inherently bonds, has been incorporated into a polymer matrix to enhance the bioactivity of implant materials. In order to manufacture custom-made bioactive implants rapidly, selective laser sintering has been investigated to fabricate hydroxyapatite and polyamide composites and their properties investigated. One objective of this research was to identify the maximum hydroxyapatite content that could be incorporated into the matrix, which was sintered at various parameters. The study focused on investigating the control of porosity and pore size of the matrix by manipulating the selective laser sintering parameters of the laser power and laser scan speed. The interception method was used to analyse the internal porous morphology of the matrices which were cross-sectioned through the vertical plane. Most notably, all structures built demonstrated interconnection and penetration throughout the matrix. Liquid displacement was also used to analyse the porosity of the matrices. The laser power showed a negative relationship between porosity and variation in parameter values until a critical power value was reached. However, the same relationship for laser scan speed matrices was inconsistent. The effects of the laser power and laser scanning speed on the features of porous structures that could influence cell spreading, proliferation, and bone regeneration are presented.  相似文献   

20.
文章介绍了正交实验设计法的特点及其对实验研究的科学指导作用。正交实验设计法可以用少数几个代表性的实验代表全面实验。采用正交试验设计和直观分析的方法,对影响激光烧结多孔金属的各因素进行研究,从而找出了最佳工艺参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号