首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We aimed at investigating oxidative stability and changes in fatty acid and tocopherol composition of extra virgin olive oil (EVOO) in comparison with refined seed oils during short‐term deep‐frying of French fries, and changes in the composition of the French fries deep‐fried in EVOO. EVOO samples from Spain, Brazil, and Portugal, and refined seed oils of soybean and sunflower were studied. Oil samples were used for deep‐frying of French fries at 180 °C, for up to 75 min of successive frying. Tocopherol and fatty acid composition were determined in fresh and spent vegetable oils. Tocopherol, fatty acid, and volatile composition (by SPME–GC–MS) were also determined in French fries deep‐fried in EVOO. Oil oxidation was monitored by peroxide, acid, and p‐anisidine values, and by Rancimat after deep‐frying. Differential scanning calorimetry (DSC) analysis was used as a proxy of the quality of the spent oils. EVOOs presented the lowest degree of oleic and linoleic acids losses, low formation of free fatty acids and carbonyl compounds, and were highly stable after deep‐frying. In addition, oleic acid, tocopherols, and flavor compounds were transferred from EVOO into the French fries. In conclusion, EVOOs were more stable than refined seed oils during short‐term deep‐frying of French fries and also contributed to enhance the nutritional value, and possibly improve the flavor, of the fries prepared in EVOO.  相似文献   

2.
The objective of this study was to compare two oils with different polyunsaturated/saturated (P/S) fatty acid ratios, refined olive oil (P/S 0.75) and palm olein (P/S 0.25), in frying French fries. The chemical qualities of the oil residues extracted from the French fries were assayed for five consecutive batches fried at 1-h intervals. The levels of total polar compounds, free fatty acids, p-anisidine value and phytosterol oxidation products (POPs) were elevated in French fries fried in both oils. The level of total polar compounds increased from 4.6 in fresh refined olive oil to 7.3% in final batches of French fries. The corresponding figures for palm olein were 9.8–13.8%. The level of free fatty acid in fresh refined olive oil increased from 0.06 to 0.11% in final products. These figures for palm olein were 0.04–0.13%. The p-anisidine value increased from 3.7 to 32.8 and 2.5 to 53.4 in fresh oils and in final batches of French fries in refined olive oil and palm olein, respectively. The total amount of POPs in fresh refined olive oil increased from 5.1 to 9.6 μg/g oil in final products. These figures were 1.9 to 5.3 μg/g oil for palm olein.  相似文献   

3.
The aim of the study was to determine the effect of oil degradation on the content of glycidyl esters (GEs) in oils used for the frying of French fries. As frying media, refined oils such as rapeseed, palm, palm olein and blend were used. French fries were fried for 40 h in oils heated to 180 °C in 30‐min cycles. After every 8 h of frying, fresh oil and samples were analyzed for acid and anisidine values, color, refractive index, fatty acid composition, and content and composition of the polar fraction. GEs were determined by LC–MS. Hydrolysis and polymerization occurred most intensively in palm olein, while oxidation was reported for rapeseed oil. The degradation of oil caused increased changes in the RI of frying oils. Losses of mono‐ and polyunsaturated fatty acids were observed in all samples, with the largest share in blend. The highest content of GE found in fresh oil was in palm olein (25 mg kg?1) and the lowest content of GE was found in rapeseed oil (0.8 mg kg?1). The palm oil, palm olein and blend were dominated by GEs of palmitic and oleic acids, while rapeseed oil was dominated by GE of oleic acid. With increasing frying time, the content of GEs decreased with losses from 47 % in rapeseed oil to 78 % in palm oil after finishing frying.  相似文献   

4.
Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1–2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.  相似文献   

5.
Soybeans produced by induced mutation breeding and hybridization were cracked, flaked and hexane-extracted, and the recovered crude oils were processed to finished edible oils by laboratory simulations of commercial oil-processing procedures. Three lines yielded oils containing 1.7, 1.9 and 2.5% linolenic acid. These low-linolenic acid oils were evaluated along with oil extracted from the cultivar Hardin, grown at the same time and location, and they were processed at the same time. The oil from Hardin contained 6.5% linolenic acid. Low-linolenic acid oils showed improved flavor stability in accelerated storage tests after 8 d in the dark at 60°C and after 8h at 7500 lux at 30°C, conditions generally considered in stress testing. Room odor testing indicated that the low-linolenic oils showed significantly lower fishy odor after 1 h at 190°C and lower acrid/pungent odor after 5 h. Potatoes were fried in the oils at 190°C after 5, 10 and 15 h of use. Overall flavor quality of the potatoes fried in the low-linolenic oils was good and significantly better after all time periods than that of potatoes fried in the standard oil. No fishy flavors were perceived with potatoes fried in the low-linolenic oils. Total volatile and polar compound content of all heated oils increased with frying hours, with no significant differences observed. After 15 h of frying, the free fatty acid content in all oils remained below 0.3%. Lowering the linolenic acid content of soybean oil by breeding was particularly beneficial for improved oil quality during cooking and frying. Flavor quality of fried foods was enhanced with these low-linolenic acid oils.  相似文献   

6.
To evaluate the effects of repeated deep‐frying on the trans‐fatty acid (TFA) formation in soybean oils, simultaneous frying experiments were carried out. French fries were prepared using three different types of soybean oil (pressed soybean oil, PSBO; first‐grade solvent extracted soybean oil, FG‐SESBO; and third‐grade solvent extracted soybean oil, TG‐SESBO). French fries were fried intermittently at 180–185°C for a total frying time of 32 h and at an interval time of 30 min. It was found that the initial amount of total TFAs was 0.29 g/100 g, 0.31 g/100 g, and 0.90 g/100 g in PSBO, TG‐SESBO, and FG‐SESBO, respectively. Before the frying started, the C18:1,t‐9, trans‐linoleic acid (TLA), trans‐linolenic acid (TLNA), and total TFA content of the PSBO and TG‐SESBO were significantly lower than in the FG‐SESBO (p<0.05). However, in the frying oil samples, the final concentration of total TFA in the PSBO, TG‐SESBO, and FG‐SESBO were 1.79 ± 0.17 g/100 g, 1.12 ± 0.10 g/100 g, and 1.70 ± 0.07 g/100 g, which was 6.17‐, 3.61‐, and 1.89‐fold higher that in fresh oil, respectively. The highest increasing slopes of C18:1,t‐9, TLA, TLNA, and total TFA were observed in the PSBO. Practical applications : A high intake of TFAs has been shown to lead to an increased risk of coronary heart disease. Plant oils, particularly soybean oil, have been widely used in the food industry in China. Frying is one of the most common methods to cook food. The formation of TFAs during frying has been shown to be closely related to the temperature and duration of the frying process. However, the effects of frying on the formation of TFAs in different soybean oils have not been well studied. In the present study, we demonstrated that increasing the number of frying cycles can cause an intensive increase in the concentration of TFAs in different types of soybean oil, but especially in PSBO.  相似文献   

7.
Compared to other vegetable oils, rice bran oil (RBO) has a characteristic dark color which further deepens upon heating or frying of foods in the oil. Darkening of the oil during heating has been studied. The dark color‐causing material in crude, chemically refined and physically refined rice bran oils was separated using a silica gel column for a hexane‐eluted oil fraction and a methanol eluted fraction. The methanol eluted fraction for all the above three types of RBO produced a dark color upon heating, hence the physically refined RBO methanol fraction was investigated further and contained monoglycerides (23.4 %) and diglycerides (67.4 %) of linoleic + linolenic acids in its methanol fraction as analyzed by column chromatography and HPLC which decreased in concentration after heating. The linoleic acid level of 37.7 % in the methanol fraction was reduced significantly to 18 % after heating (52.3 % reduction). The IR and NMR spectra were similar to those of a monoglyceride/diglyceride with NMR spectra indicating a lower amount of olefinic protons for the heated sample. These results showed that the darkening of RBO was due to the oxidation and polymerization of monoglycerides/diglycerides containing linoleic acid/linolenic acid.  相似文献   

8.
Changes in chemical, physical and sensory parameters of high‐oleic rapeseed oil (HORO) (NATREON?) during 72 h of deep‐fat frying of potatoes were compared with those of commonly used frying oils, palm olein (PO), high‐oleic sunflower oil (HOSO) and partially hydrogenated rapeseed oil (PHRO). In addition to the sensory evaluation of the oils and the potatoes, the content of polar compounds, oligomer triacylglycerols and free fatty acids, the oxidative stability by Rancimat, the smoke point and the anisidine value were determined. French fries obtained with HORO, PO and HOSO were still suitable for human consumption after 66 h of deep‐fat frying, while French fries fried in PHRO were inedible after 30 h. During the frying period, none of the oils exceeded the limit for the amount of polar compounds, oligomer triacylglycerols and free fatty acids recommended by the German Society of Fat Science (DGF) as criteria for rejection of used frying oils. After 72 h, the smoke point of all oils was below 150 °C, and the amount of tocopherols was reduced to 5 mg/100 g for PHRO and 15 mg/100 g for HORO and HOSO. Remarkable was the decrease of the oxidative stability of HOSO measured by Rancimat. During frying, the oxidative stability of this oil was reduced from 32 h for the fresh oil to below 1 h after 72 h of frying. Only HORO showed still an oxidative stability of more than 2 h. From the results, it can be concluded that the use of HORO for deep‐fat frying is comparable to other commonly used oils.  相似文献   

9.
Flavor is a decisive sensory characteristic to determine the popularity of French fries (FF). To investigate the effect of prolonged deep-frying using various oils on volatiles formation of FF, the FF were prepared in the palm oil (PO), soybean oil (SO), and high-oleic rapeseed oil (RO) for 24 hours intermittent frying. The effect of oil types was found to be more significant than the frying time on the volatiles of FF indicated from the clusters of the fried FF by chemometric analysis. A total of 26 key aroma-active compounds were identified by aroma extract dilution analysis, in which aldehydes were predominant. The FF fried in SO revealed higher desirable aroma compounds, i.e., (E, E)-2,4-decadienal and it increased to maximum value at 12 hours, and left the deep-fried odor in FF. Meanwhile, a significant increase in metallic off-flavor was observed in FF fried in SO and PO at 20 hours, indicating that oil quality reduction resulted in FF with unappealing flavor. The above results showed that frying process had an optimum frying window (approximately 4–16 hours with total polar compounds content below 22.2%), and the French fries prepared in this period obtained higher flavor scores. The study will provide insights into the effect of oil types and oxidation degree on obtaining the ideal flavors for fried food.  相似文献   

10.
Studies have been carried out to choice methods which could assess in best way the complex changes in fat during deep frying of French fries and potato crisps. A special emphasis was laid on the estimation of usefulness of simple and quick “methods” which could practically indicate the utilization time of fats (soybean oil, low erucic acid rapeseed oil, ?Sofryt”? -hardened soybean oil), used in deep-fat frying of potato products. Besides the oxidized fatty acid content, proposed by DGF (German Society for Fat Science) as a basic test for the quality assessment of used frying fats, following control tests during the deep-fat frying of potato products have been appointed: colour tests with bromthymol blue and 2,6-dichlorphenol-indophenol, sensoric evaluation, dielectric constant and colour by iodine scale. For these tests suitable limits, qualifying the utility of oils and fats for further frying of French fries and potato crisps, have been estimated.  相似文献   

11.
Acrylamide and 4‐hydroxynonenal (HNE) are among the most detrimental compounds formed during high temperature processing of food. The effect of carbon dioxide blanketing (CDB) on the formation and accumulation in food of these compounds during deep‐fat frying was investigated. French fries were fried for 7 h daily and for 7 days in canola oil at 185 ± 5°C without and with CO2 protection. The amount of acrylamide and HNE accumulated in the French fries were analyzed. Compared to standard frying conditions (SFC), frying under CDB reduced the amount of HNE by 62%. On the 3rd day of frying, the amount of acrylamide in fries fried under SFC was 3.3 times higher compared to frying with CO2 protection. Frying with carbon dioxide protection is an effective and practical way to impede formation of toxic components during deep‐fat frying. To assess formation of HNE a simple, sensitive and reliable procedure for HNE analysis in frying oils and fried products was developed and evaluated. Practical applications : The toxicity of HNE and acrylamide, coupled with the increasing consumption of fried foods necessitates that measures be taken to reduce their formation and subsequent accumulation in fried foods. The frying method proposed in this study is very effective and requires only a simple modification to the fryer. Developed rapid and simple procedure for HNE analysis allows more accurate quantification.  相似文献   

12.
Oil was hexane-extracted from soybeans that had been modified by hybridization breeding for low-linolenic acid (18∶3) content. Extracted crude oils were processed to finished edible oils by laboratory simulations of commercial oil processing procedures. Oils from three germplasm lines N83-375 (5.5% 18∶3), N89-2009 (2.9% 18∶3) and N85-2176 (1.9% 18∶3) were compared to commercial unhydrogenated soybean salad oil with 6.2% 18∶3 and two hydrogenated soybean frying oils, HSBOI (4.1% 18∶3) and HSBOII (<0.2% 18∶3). Low-18∶3 oils produced by hybridization showed significantly lower room odor intensity scores than the commercial soybean salad oil and the commercial frying oils. The N85-2176 oil with an 18∶3 content below 2.0% showed no fishy odor after 10 h at 190°C and lower burnt and acrid odors after 20 h of use when compared to the commercial oils. Flavor quality of potatoes fried with the N85-2176 oil at 190°C after 10 and 20 h was good, and significantly better at both time periods than that of potatoes fried in the unhydrogenated oil or in the hydrogenated oils. Flavor quality scores of potatoes fried in the N89-2009 oil (2.9% 18∶3) after 10 and 20 h was good and equal to that of potatoes fried in the HSBOI oil (4.1% 18∶3). Fishy flavors, perceived with potatoes fried in the low-18∶3 oils, were significantly lower than those reported for potatoes fried in the unhydrogenated control oil, and the potatoes lacked the hydrogenated flavors of potatoes fried in hydrogenated oils. These results indicate that oils with lowered linolenic acid content produced by hybridization breeding of soybeans are potential alternatives to hydrogenated frying oils.  相似文献   

13.
Polar isolates of frying oils used for frying French fries, potato chips, or French fries/tortilla chips were analyzed for nonvolatile components by high-performance size-exclusion chromatography (HPSEC) with viscometric (VIS)/refractometric (RI) detection. The degradation products were separated on three mixed-bed polystyrene/divinylbenzene columns with tetrahydrofuran as eluent. Dual VIS/RI detection of the column effluent enabled simultaneous determination of analyte molecular weights (MW) and concentrations. MW of individual components were calculated from viscosity data with the use of a universal calibration technique. HPSEC of polar samples obtained from different oilseed lines yielded triglyceride-derived products in which the corresponding nonvolatile components had variable MW and compositions. Elevated levels of high-MW components were correlated with the extent of frying oil degradation to serve as indicators for frying oil stability. MW/concentration profiles of degradation products varied notably with frying times. The distribution patterns of degradation products were markedly affected by other frying conditions and oil varieties and therefore served as fingerprint properties of specific oils. High-oleic sunflower oil (HOSUN) (used for frying French fries) appeared to be more stable than cottonseed oil: at 30 h, the concentrations of the highest MW components were 0.63 vs. 0.89 mg/100 mg oil. HOSUN (used for frying French fries/tortilla chips) tended to be more stable than sunflower oil (SUN), as the most abundant (at 30 h, 3.99 vs. 4.34 mg/100 mg oil) species were components 4 (MW=1385) and 3 (MW=2055) for HOSUN and SUN, respectively. High-oleic soybean oil (HOSBO) was notably more stable than soybean oil: at 40 h, the concentrations of the highest MW (2980 vs. 6315) components were 0.21 vs. 4.51 mg/100 mg oil. Presented in part at the 91st AOCS Annual Meeting & Expo, San Diego, California, April 2000.  相似文献   

14.
The effect of two after-cooking darkening inhibitors, sodium acid pyrophosphate (SAPP) and calcium acetate (CaAc), and their combined effect on frying oil stability and quality of french fries produced were evaluated over a period of 72 h. Samples of frying oil and par-fried french fries were taken at 3-h intervals through each experiment and analyzed for selected chemical and physical parameters. As the frying time increased, all the oil samples contained increased amounts of deterioration products. The color index and free fatty acid (FFA) values were highly correlated with frying time. There were no significant effects on oil properties in terms of FFA until 9 h of frying among the 4 pretreatments. However, from 12 to 72 h of frying, oil used to fry potatoes treated with SAPP contained less FFA than oils exposed to CaAc alone or in combination with SAPP. The fat content of par-fried french fries was approximately 0.11 g/g dry matter and remained relatively constant during extended frying. After-cooking darkening of par-fried french fries and final color of the fries were affected by the pretreatment, but not by the frying time.  相似文献   

15.
The main goal of the present work was to compare and correlate the results of physicochemical parameters and antiradical performance of some oil blends during deep‐frying, which will be an initial indicator for applying antiradical tests for monitoring deep‐frying oils. Two oil blends were prepared. The first blend was a mixture (1 : 1, wt/wt) of sunflower seed oil and palm olein (SO/PO) and the second was a mixture (1 : 1, wt/wt) of cottonseed oil and palm olein (CO/PO). The oil blends were evaluated during intermittent frying of French fries on two consecutive days for 16 h, with oil replenishing after 8 h. Changes in the fatty acid profile and some physicochemical parameters (peroxide value, color index, viscosity, total polar compounds and UV absorbance at 232 and 270 nm) were used to evaluate the alterations during frying. A quick spectrophotometric method was developed to assess deep‐frying oil quality. With the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) method, the neutralization of the stable radical DPPH by antioxidants present in the oil during frying was measured. Radical‐scavenging activity (RSA) of both oil blends was recorded during frying, wherein the results showed that the SO/PO blend had the highest RSA. It was evident from the results that a proportional correlation and positive relationship existed between the levels of fatty acids and the physicochemical characteristics of the vegetable oil blends and their RSA. The initial results obtained allow us to suggest that antiradical measurements could be used to quantify the oxidative and hydrolytic deterioration of vegetable oils upon frying.  相似文献   

16.
The antioxidative properties of Curcuma longa (turmeric) leaf extract were evaluated in refined, bleached and deodorized (RBD) palm olein using accelerated oxidation and deep frying studies at 180 °C for up to 40 h. The extract was capable of retarding oil oxidation and deterioration significantly (P < 0.05) at 0.2% concentration, better than 0.02% BHT for the Oxidative Stability Index (OSI) in an accelerated oxidation study and also the peroxide value in deep frying studies. In sensory evaluation, the French fries were acceptable and were not significantly different (P < 0.05) from one another for color, oiliness and crispiness throughout the 40-h frying study. Curcuma longa leaf extract, which had a polyphenol content of 116.3 ± 0.2 mg/g, possessed heat-stable antioxidant properties and may be a good natural alternative to existing synthetic antioxidants in the food industry.  相似文献   

17.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

18.
2-tert-Butyl-1,4-benzoquinone (TBBQ), the main oxidation product of tert-butyl-hydroquinone (TBHQ) during frying, is cytotoxic and its residual levels in frying oils and foods are unknown. In this study, TBBQ residues have been evaluated during the preparation of french fries. Results showed that frying at 140 °C resulted in the highest TBBQ peak concentration (48.42 mg kg−1) compared with frying at 190 or 170 °C. This unexpected finding can be attributed to more extensive hydrolytic reaction when frying at the lower temperature, generating more peroxyl radicals. TBBQ concentrations proved to be independent of the oil type among various unsaturated oils. However, higher TBBQ levels were observed in saturated palm oil and crude soybean oil than in unsaturated oil or refined oil. Continuous frying leads to the accumulation of a large amount of TBBQ in fried food. After frying 1–5 batches, TBBQ levels in both the frying oil and fries were above 10 mg kg−1, exceeding its critical cytotoxic concentration (IC50 value of 10.71 mg kg−1 for RAW 246.7 cells in our previous study), warranting concern with respect to the safety of fried food. FTIR has been utilized as an effective tool for visually monitoring the degree of oxidation in the frying medium with respect to its hydrogen peroxide level, which contributes to the increased level of TBBQ derived from TBHQ therein.  相似文献   

19.
After Swedish researchers reported that heated foods such as potato chips and French fries contain acrylamide, the potential for health damage resulting from the consumption of these foods became a widespread concern. Used frying oils collected from food manufacturing companies were subjected to acrylamide determination using GC/MS-SIM, but the compound was not detected. Thus, we conclude that frying oil used in deep frying would not contaminate foodstuffs with acrylamide and that the recovered oil, much of which is used as a component of animal feeds, would be safe for livestock. Model experiments heating oil at 180 degrees C suggested that no acrylamide was formed either from a mixture of major amino acids exuded from frying foodstuffs and carbonyl compounds generated from oxidized oil, or from oil and ammonia generated from amino acids.  相似文献   

20.
The effect of the operating temperature (between 220 and 270 °C) on the formation of trans isomers of linoleic and linolenic acids in physically refined rapeseed oil during deodorization in a plant‐scale semicontinuous tray‐type deodorizer (capacity 10 t/h) was investigated. The industrial procedures of physical refining consisted of a two‐step bleaching and deodorization process. The degree of isomerization of linoleic acid ranged from 0.33 to 4.77% and that of linolenic acid from 4.43 to 45.22% between 220 and 270 °C, respectively. A relation between the logarithm of the degree of isomerization and the deodorization temperature can be approximated by statistically highly significant linear functions for both linoleic and linolenic acids. Oleic acid was resistant to the heat‐induced geometrical isomerization. The values found for the ratio between the degrees of isomerization of linolenic and linoleic acids, slightly decreasing with increasing temperature, were equal to 13.6 and 12.9 at 230 and 240 °C, respectively. Two trans isomers of linoleic acid, exclusively with one double bond isomerized into trans configuration, and four trans isomers of linolenic acid, mostly with one double bond isomerized into trans configuration, were determined in deodorized rapeseed oils. Linolenic acid was observed to be the main source responsible for the formation of nearly all trans fatty acids in physically refined rapeseed oil. At 235 °C, a deodorization temperature considered as a reasonable technological compromise, the content of trans fatty acids in plant‐scale physically refined rapeseed oil was less than 1% of total fatty acids, which would be acceptable for further application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号