首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
热带地区石油污染土壤中降解菌的筛选   总被引:1,自引:0,他引:1  
通过对海南省儋州地区6个采集点的石油污染土壤样品的富集、分离、筛选,得到7株以石油烃为唯一生长碳源的细菌菌株.对其石油降解能力进行研究,结果表明,所有菌株均具有一定的石油降解能力.其中,s1、s4、s5、s6和s7菌株在筛选培养基中的石油降解率分别达到21.7%、93.0%、21.5%、25.0%和41.8%; 在土壤中的石油降解率分别为26.3%、39.1%、25.3%、31.4%和36.7%.对菌株形态和生理生化特性进行初步鉴定,s1菌株为柄杆菌属(Caulobacter); s4、s7菌株为假单胞菌属(Pseudomonas); s5、s6菌株为微球菌属(Micrococcus spp.).  相似文献   

2.
从克拉玛依地区石油污染土壤中分离筛选出4株高效石油降解菌S1、S2、S5和S8,经形态观察、生理生化反应和分子鉴定,确定4株菌分别为蜡样芽孢杆菌(Bacillus cereus)、恶臭假单胞菌(Pseudomonas putida)、枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus licheniformis)。为了提高对石油的降解效率,对4株菌的添加比例进行了响应面的优化。结果表明,当石油含量为1.5 g时,菌种S1、S2、S5和S8接种量分别为0.21 g、0.22 g、0.41 g和0.22 g时的石油降解率达到最大值。在该条件下石油降解率预测值为60.17%,验证值为60.10%。  相似文献   

3.
溴氰菊酯降解菌的筛选及其降解特性研究   总被引:3,自引:1,他引:2  
以过期变质的溴氰菊酯农药为供试材料,采用细菌培养基初筛后,依据气相色谱法测定溴氰菊酯选择性培养基中溴氰菊酯降解率的复筛结果,筛选出2株(X_(09)、X_(20))溴氰菊酯降解菌.结果表明,过期变质的农药同样是筛选农药降解菌的重要资源;筛选出的2株溴氰菊酯降解菌X_(09)、X_(20)分别隶属于肠杆菌属(Enterobacter sp.)和假单胞菌属(Pseudomonas sp.).其降解温度为20~35℃,降解pH值为6~10.2株降解菌在培养温度为30℃条件下,溴氰菊酯降解率分别为65.6%和48.4%;在pit值为7.0条件下,溴溴氰菊酯的降解率分别为68.1%和49.5%;加大接种量(20%-25%)可以提高X_(09)的溴氰菊酯降解率(69.1%),添加1%的牛肉膏、葡萄糖、蔗糖可显著提高X_(20)溴氰菊酯降解率(69.3%).  相似文献   

4.
为评估生物表面活性剂生产菌对石油烃降解菌的辅助效应,从热带近海海域石油烃污染水样中筛选出一株生物表面活性剂生产菌BSM-301,通过生理生化试验和16S r DNA序列分析,确定该菌为微球菌属(Micrococcus sp.),利用薄层色谱法和傅里叶变换红外光谱法初步确定其产物为脂肽类生物表面活性剂。以菌株发酵液的表面张力值为评价指标,对其生活条件进行优化,并进行海水环境条件下的石油烃辅助降解试验。结果表明,该菌株最佳碳源为葡萄糖,最适初始p H值为7.5,最适培养温度为30℃,添加后石油烃降解率比两种降解菌SJDQ-112和SJDQ-1122单独作用分别提高了64.9%和86.2%。试验正向辅助效果较为明显,为进一步研究海水中石油污染的生物修复提供了理论依据。  相似文献   

5.
石油中的重金属组分能影响微生物对土壤中石油烃的降解效率。采用实验室前期筛选的两株高效石油烃降解菌枯草芽孢杆菌(Bacillus subtillus)和多食鞘氨醇杆菌(Sphingobacterium multivorum),研究了石油中常见的3种重金属镉、镍、钒及其组合对这两种菌生长的影响,以便为理解降解菌在石油污染土壤中的生长代谢及预测其修复效率提供理论基础。镉、镍、钒对菌的生长均具有抑制作用,在一定范围内呈良好量效关系,生长抑制效应由强到弱的顺序为Cd>Ni>V。两种菌对同一重金属的抗性因重金属种类差别也有所不同。3种重金属在其组合中对菌的生长抑制效应所起的作用大小取决于其各自的浓度水平。除Ni和V在低浓度水平下的交互具有协同作用外,重金属之间的交互作用均呈拮抗关系。  相似文献   

6.
苯酚和酚类化合物是工业废水中的主要环境污染物,如焦化厂、炼油厂和石油化工厂等,去除工业废水中的酚类化合物对环境保护有极其重要的意义。通过富集驯化,从石化污水处理厂的活性污泥中筛选出一株产生物表面活性剂的高效苯酚降解菌。并对其进行了生理生化鉴定及降解性能的研究。实验结果表明,BPH-3菌为假单胞杆菌;菌株最佳的降解条件pH=7.0,温度为30℃,转速为150 r/min,最高耐盐度为3%,在接种量为5%,苯酚初始质量浓度为600 mg/L,菌株12 h内的降解率可达100%。  相似文献   

7.
为研究生物表面活性剂对石油降解菌的作用效果,采用酸沉法从芽孢杆菌(Bacillus sp.)ZG0427培养液中提取了生物表面活性剂,用薄层层析方法对其类型进行鉴定,并测定了带电性质及乳化性能。分别将芽孢杆菌ZG0427菌体和表面活性提取物加入石油降解假单胞菌(Pseudomonas sp.)YM15及红平红球菌(Rhodococcus erythropolis)KB1培养物中,研究其对石油降解菌生长及石油降解效果的影响。结果表明,芽孢杆菌ZG0427所产表面活性剂为脂肽类阴离子表面活性剂。当表面活性剂水溶液质量浓度为100 mg/L时,其乳化指数可达到58.0%。当ZG0427与YM15混合培养时石油降解率从32.70%提高到39.33%;与KB1混合培养时,石油的降解率从19.98%提高到34.33%。当在石油降解菌中添加不同质量浓度表面活性剂提取物后,不仅促进了假单胞菌YM15的生长,还能明显增加其石油降解效率(p0.05),在培养基中添加20 mg/L表面活性剂提取物,培养第5 d时,YM15菌落数达到2.5×1012CFU/m L,对石油的降解率为40.07%。生物表面活性剂产生菌ZG0427与石油降解菌KB1及YM15构成的复合菌剂对石油有良好的降解效果,但高剂量表面活性剂对KB1生长产生了不同程度的抑制作用,导致石油降解率降低。  相似文献   

8.
在深圳大鹏澳海水鱼类网箱养殖区取得表层沉积物,通过2个月的间歇曝气选择性富集,分离出6株细菌,通过测定其对野生杂鱼鱼糜饵料有机物的降解能力,进一步筛选出4株对鱼糜饵料有机物有快速、高效降解能力的细菌.7 d培养生化需氧量(BOD7)范围在1 040~1 140 mg/L,5 d培养化学需氧量去除率(CODMn)范围在13.58%~46.9%,有机物的可生化降解性(BOD5/COD0)在81.56%~89.43%.4株细菌两两组合的5 d培养CODMn平均去除率为64.91%±6.51%,是单株菌平均去除率(30.60%±13.63%)的2倍多; 而BOD5/COD0范围在86.10%~89.13%,与单株菌间没有明显差别.通过部分长度16S rDNA序列分析,并与GenBank和EMBL数据进行同源性检索,结果表明,有2株细菌分别隶属于表皮葡萄球菌属(Staphylococcus sp.)和盐单胞菌属(Halomonas sp.),另2株分别与盐单胞菌属(Halomonas sp.)和假单胞菌属(Pseudomonas sp.)相近.  相似文献   

9.
多环芳烃芘降解菌株的培养与降解特性研究   总被引:1,自引:1,他引:0  
采自浑河流域的底泥样品以多环芳烃芘为唯一碳源反复驯化,分离筛选出1株对多环芳烃芘具有降解作用的菌株P-D-1.经形态、生理生化特性及16S rDNA序列同源性分析,该菌株为革兰氏阳性菌.利用菌株的16S rDNA测序后的部分序列通过NCBI在线比对,与Genbank中枯草芽孢杆菌属的同源性高达99%.初步鉴定菌株为枯草芽孢杆菌属菌株(Bacillus subtilis).该菌株的最适生长条件为30℃,pH=7.0.采用高效液相色谱(HPLC)对其降解特性及培养条件进行优化,研究不同碳源、氮源、氯化钠质量浓度和通气量对多环芳烃芘降解的影响.结果表明,芘的初始质量浓度为75 mg·L-1时,在以蔗糖为碳源,酵母膏为氮源,氯化钠质量浓度为0.02g·mL-1,在250mL三角瓶中加入100 mL培养基状况下,该菌株的生长效果最佳,对多环芳烃芘的降解率达到82.6%.  相似文献   

10.
通过液体富集培养,平板培养分离法从焦化废水的污泥中分离出1株可耐受2 000 mg/L苯酚的菌株,经16S rDNA序列分析,鉴定为施氏假单胞菌(Pseudomonas stutzeri).该菌能以苯酚为唯一碳源和能源生长.通过摇瓶试验和高效液相色谱( HPLC)分析法可知,在pH=7.5,温度为30℃的条件下,苯酚质量浓度在50~400 mg/L时,该菌细胞生长和对苯酚的降解转换快速同步进行.当苯酚质量浓度在800~900 mg/L,菌细胞依次出现快速生长、延缓生长、次快速生长3个生长时期,在前两时期内苯酚降解率低于5%,在次快速生长期内苯酚降解率从低于5%快速增加到100%.气相色谱-质谱联用仪(Gc-MS)测定结果表明,该菌可将苯酚转化成4-羟基-2-氧代戊酸、邻苯二酚、对苯二酚、3,4-二羟基苯甲酸和对羟基苯甲酸等中间产物.  相似文献   

11.
利用石油污染土壤中筛选出的2株石油降解菌(铜绿假单胞菌和凝结芽孢杆菌)修复油污土壤,采用紫外光谱法和三维荧光光谱法对油污土壤修复过程中的水溶性有机物(DOM)变化进行了半定量分析.结果表明:1)紫外光谱分析中接种外源微生物前后油污土壤DOM的SUVA254值和ABS285值均有不同程度的减少,说明DOM相对分子质量降低,含有的芳香族和不饱和共轭双键结构减少,其芳构化程度降低;2)随着油污土壤生物修复的进行,与未接种石油降解菌的土壤相比,投加降解菌的油污土壤中水溶性有机物芳香族类蛋白质含量呈降低趋势,紫外区类富里酸呈增加趋势.荧光光谱半定量分析结果表明,接种外源微生物可明显减小石油污染土壤中水溶性有机物的芳构化程度.  相似文献   

12.
邻苯二甲酸二甲酯(DMP)降解菌的分离鉴定及降解特性   总被引:1,自引:0,他引:1  
采用梯度压力驯化法从河流沉积物中筛选到一株能够以邻苯二甲酸二甲酯(Dimethyl Phthalate,DMP)作为碳源和能源生长的菌株,命名为THF-2,对其进行16S r DNA扩增、T/A克隆后测序,菌株THF-2被鉴定为恶臭假单胞菌(Pseudomonas putida)。研究了温度、初始p H值和表面活性剂对菌株THF-2降解DMP的效果,测定了邻苯二甲酸酯(PAEs)对菌株THF-2生长的影响,进而分析了菌株对不同质量浓度DMP的降解效果。结果表明,菌株在15~20℃对DMP具有良好的降解效果,最适温度为20℃;在p H=4~8范围,随p H值升高,DMP降解率增大,最佳p H值条件为8.0。在最适条件下,经过72h培养,菌株THF-2对质量浓度500 mg/L的DMP降解率达89.5%。不同表面活性剂对THF-2降解DMP的影响存在差异。添加质量分数1%非离子表面活性剂曲拉通X-100和吐温80,对THF-2降解DMP有一定的促进作用,但差异不显著(p0.05);当曲拉通X-100和吐温80添加质量分数为2%和3%时,降解作用受到抑制,降解率与添加量呈显著负相关(r=-0.98,p0.05)。添加离子型表面活性剂十二烷基硫酸钠(SDS)会抑制THF-2对DMP降解作用。DMP降解试验表明,当DMP质量浓度为100~500 mg/L时,THF-2对DMP的降解符合一级动力学方程模型,降解半衰期为13.92~27.08 h。因此,菌株THF-2可应用于低温地区及低温条件下DMP的生物处理。  相似文献   

13.
采用紫外线对一株Kosakonia sp.石油降解菌(S-1)进行紫外诱变育种。在照射功率15 W,波长为253.7 nm的条件下,确定最适诱变时间为140 s,此时正突变率最高。分离选育出一株遗传稳定的突变优势菌Y-16,与出发菌S-1相比,石油降解率提高了22.64%,且在pH值为5~9范围内,Y-16降油率均超过50%,对pH值的适应范围更广,在高浓度盐环境中有更好的耐盐性。经过60 d石油污染土壤的生物修复模拟试验发现,Y-16和S-1的最终石油降解率分别为91.83%和69.58%,其中降解36 d时,Y-16的降油率已达到71.19%,Y-16对石油的降解半衰期是S-1的0.4倍,降解周期更短,生物修复效果更好。  相似文献   

14.
一株低温高效植物油降解菌的驯化筛选及固定化研究   总被引:1,自引:1,他引:0  
为了解决因低温而导致的废水中油脂难以处理的问题,从冬季重庆大学餐厅排污管道的底泥中分离出1株可低温降解植物油的菌株DJ-1。将此菌株多次驯化培养后,在5℃条件下利用其对含20g/L菜籽油复筛培养基的模拟含油废水进行处理。经过3 d处理,可去除废水中70.63%的植物油。经16S rDNA测序分析,该菌株为假单胞菌的一个未定种属(相似度为99%)。使用泥炭和木屑作为固定化载体,按照m(泥炭)∶m(木屑)∶m(菌液)=1∶4∶20的比例将扩培后的DJ-1菌剂制作成细菌固定化菌粉。在5℃条件下利用菌粉对含20 g/L菜籽油复筛培养基的模拟含油废水进行处理,菌粉投加量为0.15 g/L。经过3 d处理,废水中植物油的降解率达到77.34%,5 d后达到85.22%。  相似文献   

15.
以桂林市上窑污水处理厂污泥脱水车间剩余污泥、上窑堆肥厂的堆肥堆料和桂林雁山镇森林土壤为菌源进行驯化,分离纯化并筛选得到2株能分别以壬基酚(NP)和双酚A(BPA)为唯一碳源和能源生长的降解菌株N-1和B-1。通过对菌株的16S r DNA序列同源性分析,初步鉴定N-1和B-1菌分别为Cupriavidus(贪铜菌属)、Acinetobacter(不动杆菌属)。通过两菌株分别降解NP和BPA的单因素实验,确定了降解动力学以及时间、温度、p H值对降解过程的影响。研究结果表明,细菌N-1,B-1的最佳初始目标污染物质量浓度为5~10 mg/L,降解40 h,N-1去除率可达49.63%,B-1去除率可达62.34%。细菌N-1对NP的去除半衰期t1/2为41.44~48.02 h;B-1对BPA的去除半衰期t1/2为35.23~37.33 h。细菌N-1,B-1的最佳降解温度均为30℃,最佳p H值均在6.5~7.5之间,即两种细菌在中温、中性条件下对NP和BPA降解效果最佳。  相似文献   

16.
筛选出了一株适用于石化污水处理的异养硝化-好氧反硝化产微生物絮凝剂菌株HAD-2,鉴定其为门多萨假单胞菌(Pseudomonas mendocina),考察了其最佳硝化条件、反硝化性能及在模拟污水中的脱氮能力。菌株为耐热菌,偏碱性(pH=8.5)和高碳氮比(25∶1)时硝化性能最佳。在异养硝化体系中,12 h时菌株对氨氮的去除率达到92.29%,硝酸盐和亚硝酸盐积累少;在反硝化体系中,12 h时菌株对亚硝酸盐和硝酸盐的去除率分别达到86.40%和84.92%;在模拟废水中,48 h时菌株对氨氮、硝态氮和亚硝态氮的降解率分别达到95.25%、65.47%和72.40%。菌株在多种培养基中可产微生物絮凝剂,在葡萄糖培养基中絮凝能力最佳,絮凝率为94%。  相似文献   

17.
从恶臭假单胞菌(Pseudomonas putida)X-8中分离纯化出一种壬基酚降解酶,研究其酶学特性.将该菌株X-8在NP-尿素培养基中振荡培养26 h(30℃),其细胞经超声波破壁,得到粗提酶液.粗提酶液经硫酸铵分级盐析、透析脱盐、Sephadex G-200分子筛柱层析、DEAE-Sepharose Fast' Flow离子交换层析,得到凝胶电泳均一的NP降解酶.SDS-PAGE电泳结果表明,该酶相对分子质量为37 000±1,适宜作用条件为30℃、pH=7.0.该酶在pH=7.0~10.0、10~50℃时非常稳定.本研究得到的壬基酚降解酶活力强,常温下反应速度快、稳定性高,可用于污水中壬基酚的生物降解.将壬基酚降解酶纯化至电泳纯时工艺复杂、收率较低,但实际应用中只需对该酶进行粗分离,其工艺简单、收率高,因此该酶可用于含NP废水的处理.  相似文献   

18.
为研究以天然有机材料为载体的固定化微生物降解石油的效果,使其应用于修复石油污染物成为可能,选取高效石油降解单株菌SM -1和混合菌MM -7为试验菌株,并以天然有机材料为载体,采用吸附法制备固定化微生物,考察不同材料载体YJ-07和YJ-05的固定化微生物的降解性能以及不同环境因素,包括pH值、初始油质量浓度、接种量、盐(NaCl)质量浓度对游离菌和固定化降解菌的石油降解率的影响.结果表明:固定化菌MM - 7(YJ-07)的石油降解率为59.6%,比固定化菌MM -7(YJ -05)高2.3倍;固定化菌对石油的降解效果明显优于游离菌,降解率较游离菌提高10% ~43%,对环境因素的变化有更强的耐受性;各单株固定化菌与游离菌最适宜条件为pH=7~8,盐质量浓度5~7 g/L,石油质量浓度1~7 g/L,接种量10%~20%;混合菌的降解效果略好于单菌.  相似文献   

19.
以正十六烷无机盐培养基为选择培养基,从武汉石化输油管附近土壤中筛选出1株高效降解长链烷烃的菌株,命名C3,对其进行生理生化、16S r DNA鉴定,C3为不动杆菌属。在正十六烷浓度为1 000 mg/L的无机盐培养基中接入4%的种子液,放入35℃、125 r/min摇床中震荡60 h,C3对正十六烷的降解率可达100%,其降解动力学拟合结果符合Monod模型。将C3应用到柴蜡的降解,96 h后,1 000 mg/L的柴蜡混合溶液的降解率能达到91%。C3产生的生物表面活性剂经鉴定为磷脂类活性剂,排油圈直径为80 mm,CMC约为35 mg/L,能将水的表面张力降低到20.79 m N/m。该菌株对长链烷烃的降解提供了良好的菌源。  相似文献   

20.
了解特定环境中高氯酸盐(ClO-4)降解菌的群落组成,对ClO-4的降解具有重要的指导意义。通过添加醋酸盐作为电子供体降解ClO-4,利用高通量测序(HiSeq 2000)的方法获得了复杂环境中生物群落的组成,对比了降解前后菌种结构的变化。结果表明,补充醋酸盐的降解体系(Acetate Degradation,AD)将10 mg/L ClO-4降至检出限以下需100 h。降解完毕后代表性的ClO-4降解菌Dechloromonas的相对丰度为0.2%,与原始活性污泥相比无明显差别;另一典型ClO-4降解菌脱氯菌属Azospira相对丰度为3.2%;一些同时参与ClO-4降解和脱氮作用的细菌如假单胞菌属Pseudomonas也有检出,相对丰度为8%。异养条件下ClO-4降解是假单胞菌属Pseudomonas和脱氯菌属Azospira起主导作用。AD体系内菌种多样性小于原始活性污泥。电子供体的加入使活性污泥类的混合体系内生物群落结构单一化,使降解基质具备了在特定环境下针对某种污染物降解的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号