共查询到18条相似文献,搜索用时 80 毫秒
1.
2.
3.
4.
5.
6.
7.
DNA组装与转移技术是合成生物学的核心使能技术之一,生命体设计改造的复杂度不断提升,使得对大片段DNA组装与转移技术的需求也日益旺盛。小片段DNA的组装与转移技术目前已经比较成熟,大片段DNA由于其分子量大、易断裂,使得体外操作繁琐且效率低下。聚焦酿酒酵母体内组装和转移的技术进展,详细介绍了基于酿酒酵母一次组装和迭代组装的不同方法,并从导入与导出的角度介绍了大片段DNA的转移技术,便于研究者更好地理解和选择酿酒酵母体内组装与转移技术。此外,还展望了将酿酒酵母开发为大片段DNA组装与转移通用平台实现更多物种基因组大尺度设计改造的愿景。 相似文献
8.
DNA胞嘧啶5-甲基化修饰是表观遗传重要的修饰之一,其对基因表达的调控依赖下游的识别蛋白识别和传递甲基化信号.本文围绕两种主要的甲基化DNA识别结构域——MBD结构域和SRA结构域,综述了它们识别不同修饰形式DNA的结构基础以及发挥功能的分子机理. 相似文献
9.
[目的]DNA磷硫酰化修饰是DNA骨架上非桥接的氧原子以序列选择性和R-构型被硫取代的一种新型DNA修饰。目前,磷硫酰化修饰在多种细菌、古生菌以及人类致病菌中多有发现,但其分子调控机制尚不清楚。为了全面解析磷硫酰化修饰的调控机制,本文选择荧光假单胞菌Pf0-1为研究对象,开展了其DNA磷硫酰化修饰的调控机制研究。[方法]首先,构建了spfB基因缺失和回补菌株,使用碘能特异性断裂磷硫酰化修饰DNA的方法,研究了该基因缺失对修饰表型的影响。利用cDNA在相邻同方向的基因间隔区进行PCR,确定了磷硫酰化修饰基因簇spfBCDE内的共转录单元。通过荧光定量RT-PCR,分析了spfB基因缺失突变株中磷硫酰化修饰基因的转录量。利用异源表达并纯化得到的重组蛋白SpfB进行了体外功能研究。通过EMSA实验,验证了SpfB蛋白具有与spfB启动子序列结合活性。通过DNase I footprinting实验,精确定位了SpfB蛋白与DNA结合序列。[结果]spfB基因的缺失加剧了磷硫酰化修饰DNA断裂所致电泳条带弥散的表型,spfB基因的回补能够恢复该表型,证明spfB基因负调控磷硫酰化修饰。鉴定了spf基因簇中只含有1个共转录单元,且该共转录单元在△spfB突变株中转录水平明显上升。通过EMSA和DNase I footprint实验,检测了SpfB蛋白与磷硫酰化修饰基因spfBCDE的启动子区域5''-TGTTTGT-3''相结合。[结论]SpfB作为转录调控因子负调控磷硫酰化修饰基因spfBCDE的表达,为解析磷硫酰化修饰的调控机制和全面理解基因组上的部分修饰特征奠定了基础。 相似文献
10.
【目的】DNA磷硫酰化修饰是DNA骨架上非桥接的氧原子以序列选择性和R-构型被硫取代的一种新型DNA修饰。目前,磷硫酰化修饰在多种细菌、古生菌以及人类致病菌中多有发现,但其分子调控机制尚不清楚。为了全面解析磷硫酰化修饰的调控机制,本文选择荧光假单胞菌Pf0-1为研究对象,开展了其DNA磷硫酰化修饰的调控机制研究。【方法】首先,构建了spfB基因缺失和回补菌株,使用碘能特异性断裂磷硫酰化修饰DNA的方法,研究了该基因缺失对修饰表型的影响。利用cDNA在相邻同方向的基因间隔区进行PCR,确定了磷硫酰化修饰基因簇spf BCDE内的共转录单元。通过荧光定量RT-PCR,分析了spfB基因缺失突变株中磷硫酰化修饰基因的转录量。利用异源表达并纯化得到的重组蛋白SpfB进行了体外功能研究。通过EMSA实验,验证了SpfB蛋白具有与spfB启动子序列结合活性。通过DNase I footprinting实验,精确定位了Spf B蛋白与DNA结合序列。【结果】spf B基因的缺失加剧了磷硫酰化修饰DNA断裂所致电泳条带弥散的表型,spf B基因的回补能够恢复该表型,证明spf B基因负调控磷硫酰化修饰。鉴定了spf基因簇中只含有1个共转录单元,且该共转录单元在?spfB突变株中转录水平明显上升。通过EMSA和DNase I footprint实验,检测了SpfB蛋白与磷硫酰化修饰基因spf BCDE的启动子区域5′-TGTTTGT-3′相结合。【结论】SpfB作为转录调控因子负调控磷硫酰化修饰基因spf BCDE的表达,为解析磷硫酰化修饰的调控机制和全面理解基因组上的部分修饰特征奠定了基础。 相似文献
11.
随着基因组相关技术(测序、编辑、合成等)和知识(功能基因组学)的日益成熟,合成基因组学在本世纪迎得了发展的契机。病毒、原核生物的全基因组相继被化学合成并支持生命的存活,第1个真核生物合成基因组计划已经完成过半,人类基因组编写计划提上日程。在基因组合成的实践过程中,研究者们不断探索对基因组进行重编和设计所应遵循的规则,提高从头合成、组装和替换基因组的技术手段。合成基因组在工业、环境、健康和基础研究领域有着广阔的应用前景,同时也带来了相应的伦理问题。结合在Sc2.0计划中的基因组合成研究和近期合成基因组学所取得的重大进展,本文综述了基因组设计和合成相关的科学、技术和伦理内容,并探讨了未来发展所面对的挑战。作为合成生物学最重要的领域之一,合成基因组学方兴未艾。 相似文献
12.
13.
Here we tell a 20-year long story. It began with an easily overlooked DNA degradation (Dnd) phenomenon during electrophoresis and eventually led to the discovery of an unprecedented DNA sulfur modification governed by five dnd genes. This unusual DNA modification, called phosphorothioation, is the first physiological modification identified on the DNA backbone, in which the nonbridging oxygen is replaced by sulfur in a sequence selective and stereo-specific manner. Homologous dnd gene clusters have been identified in diverse and distantly related bacteria and thus have drawn immediate attention of the entire microbial scientific community. Here, we summarize the progress in chemical, genetic, enzymatic, bioinformatical and analytical aspects of this novel postreplicative DNA modification. We also discuss perspectives on the physiological functions of the DNA phosphorothioate modification in bacteria and their implications. 相似文献
14.
Lisa Schubert Ivo A Hendriks Emil P T Hertz Wei Wu Selene SellsBaiget Saskia Hoffmann Keerthana Stine Viswalingam Irene Gallina Satyakrishna Pentakota Bente Benedict Joachim Johansen Katja Apelt Martijn S Luijsterburg Simon Rasmussen Michael Lisby Ying Liu Michael L Nielsen Niels Mailand Julien P Duxin 《EMBO reports》2022,23(4)
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI‐FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)‐mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error‐free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error‐free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI‐deficient cells are exquisitely sensitive to ICL‐inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR‐mediated ICL repair is defective, and breaks are instead re‐ligated by polymerase θ‐dependent microhomology‐mediated end‐joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error‐free ICL repair. 相似文献
15.
16.
Isabell K. Strawn Paul J. Steiner Matilda S. Newton Zachary T. Baumer Timothy A. Whitehead 《Biotechnology and bioengineering》2023,120(10):3057-3066
Construction of user-defined long circular single stranded DNA (cssDNA) and linear single stranded DNA (lssDNA) is important for various biotechnological applications. Many current methods for synthesis of these ssDNA molecules do not scale to multikilobase constructs. Here we present a robust methodology for generating user-defined cssDNA employing Golden Gate assembly, a nickase, and exonuclease degradation. Our technique is demonstrated for three plasmids with insert sizes ranging from 2.1 to 3.4 kb, requires no specialized equipment, and can be accomplished in 5 h with a yield of 33%–43% of the theoretical. To produce lssDNA, we evaluated different CRISPR-Cas9 cleavage conditions and reported a 52 ± 8% cleavage efficiency of cssDNA. Thus, our current method does not compete with existing protocols for lssDNA generation. Nevertheless, our protocol can make long, user-defined cssDNA readily available to biotechnology researchers. 相似文献
17.
Eiji Takita Katsunori Kohda Hajime Tomatsu Shigeru Hanano Kanami Moriya Tsutomu Hosouchi Nozomu Sakurai Hideyuki Suzuki Atsuhiko Shinmyo Daisuke Shibata 《DNA research》2013,20(6):583-592
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation. 相似文献
18.
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function – deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria.Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction. 相似文献