首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review critically evaluates the plastic accumulation challenges and their environmental (primarily) and human (secondarily) impacts. It also emphasizes on their degradation and fragmentation phenomena under marine conditions. In addition, it takes into account the leachability of the various chemical substances (additives) embedded in plastic products to improve their polymeric properties and extend their life. Regardless of their effectiveness in enhancing the polymeric function of plastic products, these additives can potentially contaminate air, soil, food, and water. Several findings have shown that, regardless of their types and sizes, plastics can be degraded and/or fragmented under marine conditions. Therefore, the estimation of fragmentation and degradation rates via a reliable developed model is required to better understand the marine environmental status. The main parameter, which is responsible for initiating the fragmentation of plastics, is sunlight/UV radiation. Yet, UV- radiation alone is not enough to fragment some plastic polymer types under marine conditions, additional factors are needed such as mechanical abrasion. It should be also mentioned that most current studies on plastic degradation and fragmentation centered on the primary stages of degradation. Thus, further studies are needed to better understand these phenomena and to identify their fate and environmental effects.  相似文献   

2.
In order to find a clean, efficient and sustainable new energy source that can replace fossil fuels, hydrogen energy is considered to be the most ideal choice. Electrocatalytic oxygen evolution plays a vital role in the development of hydrogen energy, promotes the research of new electrocatalysts, and is dedicated to find materials with high electrocatalytic efficiency. This article discusses in detail the major developments in OER electrocatalysts, including recently reported metal and non-metal based materials. Metal-based catalysts, although having the advantages of high catalytic activity, have disadvantages such as poor stability and low selectivity, which hinder the further application of such materials. Non-metallic based materials avoid such disadvantages and exhibit very substantial performance in overall water decomposition. This review provides useful knowledge of a well-designed OER electrocatalyst and a possible strategy for OER/HER dual-function catalytic performance for future development.  相似文献   

3.
TiO2 has gained tremendous attention as a cutting-edge material for application in photocatalysis. The performance of TiO2 as a photocatalyst depends on various parameters including morphology, surface area, and crystallinity. Although TiO2 has shown good catalytic activity in various catalysis systems, the performance of TiO2 as a photocatalyst is generally limited due to its low conductivity and a wide optical bandgap. Numerous different studies have been devoted to overcome these problems, showing significant improvement in photocatalytic performance. In this study, we summarize the recent progress in the utilization of TiO2 for the photocatalytic hydrogen evolution reaction (HER). Strategies for modulating the properties toward the high photocatalytic activity of TiO2 for HER including structural engineering, compositional engineering, and doping are highlighted and discussed. The advantages and limitations of each modification approach are reviewed. Finally, the remaining obstacles and perspective for the development of TiO2 as photocatalysts toward high efficient HER in the near future are also provided.  相似文献   

4.
Carrageenan-based (CRG) hard capsules have a slower disintegration rate compared to that of gelatin capsules. Therefore, there is an urgent need to optimize the performance of this material using the oligomerization process. The preparation was conducted by oligomerizing CRG, cross-linking it with maltodextrin (MD), and plasticizing it with sorbitol (SOR). Based on our research, we found that the capsule prepared with the code CRG(O)-MD/SOR had an ash content of 11.80% and a water content of 17.20 ± 1.20 %. No microbes or yeast were found in the capsule, and only negligible amounts of heavy metal traces were present. Scanning electron microscopy (SEM) morphology analysis of the capsule surface showed that no pores were observed, even at a magnification of 10,000 times. This result was supported by the BET-BJH analysis, which showed that the pores had an average diameter of 49.26 Ǻ. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the Tg of the prepared capsules was at 51.4 °C. Fourier-transform infrared spectroscopy (FTIR) analysis showed that the presence of citric acid as the oligomerization agent had changed the chain composition of the carrageenan. Acute toxicity analysis showed that the capsule was safe even at a dose of 3,000 mg/bw. The Young's modulus of CRG(O)-MD/SOR was determined to be 1.500 ± 0.52 MPa. In vitro disintegration testing of CRG(O)-MD/SOR showed that the capsule required 20.01 ± 1.13 mins, 23.13 ± 1.14 mins, and more than 120 mins to disintegrate at pH 1.2, 4.5, and 6.8, respectively. Release kinetics analyses showed that the drugs paracetamol (PCT) and salicylamide (SCA) followed the zeroth-order model at pH 1.2 and 4.5, while they were best described by the Peppas-Sahlin model at pH 6.8. Finally, the maximum swelling degree of the CRG(O)-MD/SOR hard capsule was determined to be 708.88%, which was reached in 15.22 mins. This capsule has the potential to be used as an alternative to conventional hard capsules on a broader scale. Furthermore, this work supports Sustainable Development Goals (SDGs) point 3, good health and well-being, by providing a capsule made from biomaterial.  相似文献   

5.
In present study, an investigation was carried out to develop and validate an analytical method for the selective extraction and determination of griseofulvin (GSF) from plasma samples. For this purpose, a rational approach was made to synthesize and characterize the surface molecularly imprinted polymers (SMIPs). The SMIPs were utilized as solid phase extraction (SPE) sorbents. The SMIPs were prepared by using GSF as template molecule on the surface of modified silica particles through a non-covalent technique. The particles demonstrated high adsorption capacity (119.1 µg/mL), fast adsorption equilibrium time (30 min) and good recognition selectivity for the template drug. The scanning electron microscopy and infrared spectroscopy were used to explain the structural and morphological characteristics of the SMIPs and surface non-imprinted polymers. The SPE method was combined with HPLC for plasma analysis. The method validation results demonstrated that the established method possessed good linearity for GSF ranging from 0.1 to 50 µg/mL (R2 = 0.997). The limit of detection for this method was 0.02 µg/mL for rat plasma samples. The recoveries of GSF from spiked plasma samples were (90.7–97.7%) and relative standard deviations were (0.9–4.5%). Moreover, the SMIPs as selective SPE sorbent can be reused more than 8 times which is a clear advantage over commercial SPE sorbents. Finally, the usefulness of the proposed strategy was assessed by extraction and detection of GSF in real rat plasma samples.  相似文献   

6.
Scutellariae Radix (SR), the dried root of Scutellaria baicalensis Georgia, is a famous Chinese materia medica that has been widely employed. Raw Scutellariae Radix (RSR), steamed Scutellariae Radix (SSR), and wine Scutellariae Radix (WSR) are adopted for use in clinical practice. Because of their easily confused appearance, they are always misused. Aiming at this problem, an ultra performance liquid chromatography coupled with photodiode array detector (UPLC-PDA) method was established to survey misuse of the RSR and the processed SR (SSR and WSR) in the market by employing baicalin (BC), wogonoside (WS), baicalein (BN), and wogonin (WN) as quality indicators. Fortunately, β-glucuronidase, which mediates conversion from flavone glycoside to aglycone, was identified in the RSR samples by the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The significant production of BN and WN was witnessed in the RSR samples, which did not occur in the SSR and WSR samples in virtue of the inactivated β-glucuronidase. Besides, the different capacities of β-glucuronidase were evaluated in the tested samples. In general, we provided the first evidence to scientifically identify RSR from SSR and WSR.  相似文献   

7.
This study investigates the treatment of cutting oil wastewater from the automotive parts manufacturing industry to promote sustainability via the use of ‘used shot blasts’, which are the by-products of auto parts production. Used shot blasts are rich iron sources of Fe0, which becomes an effective catalyst in the Fenton reaction. A modified air-Fenton (MAF) system was proposed to generate hydroxyl radicals that eliminated recalcitrant organics in cutting oil wastewater. First, the Taguchi method, comprising the L18 orthogonal array design, was used to identify significant operation factors, including the size and amount of used shot blasts, initial pH, reaction time, mixing speed, initial cutting oil concentration, and air flow rate. Then, a central composite rotatable design coupled with response surface methodology (RSM) was used to determine the optimal conditions and model the influencing variables. The results provided three crucial variables for the cutting oil wastewater treatment through use of the MAF system: initial pH, the amount of used shot blasts, and initial cutting oil concentration. RSM was applied to reveal the optimum operating conditions, achieving a maximum removal efficiency of 92.82% for chemical oxygen demand (COD), 80.18% for total organic carbon (TOC), and 99.55% for turbidity within 45 min of operating the MAF system. The model agreed well with the experimental data, with coefficient of determination values of 0.9819, 0.9654, and 0.9715 for COD, TOC, and turbidity removal efficiency, respectively. Pseudo-second-order reaction kinetics fitted well for COD removal, with a rate constant of 0.0218 min?1 and hydrogen peroxide generation of 0.0169 M. Overall, the proposed MAF system was efficient and had a low operating cost (0.67 USD/m3).  相似文献   

8.
The development of new products and technologies based on agro-industrial waste use has been caused by the dearth of raw materials linked to environmental factors. In this work, it was aimed at proving the potential of using Bagassa guianensis species forestry waste (MENDESS ROSS Ltda., located on Mucajaí – RR/Brazil) in obtaining bioactive compounds and the use of ethanolic extract as a bioproduct in combating oxidative stress. The chemical profile of ethyl acetate and ethanolic extracts, by HPLC, HPTLC and NMR, allowed to identify the presence of important phytochemical classes, such as fatty acids, stilbenes, moracins, flavanones and dihydroflavonols in both extracts, in addition to the identification of bioactive compounds of pharmacological and economic relevance, such as stilbenes trans-resveratrol, trans-oxyresveratrol, moracin M, moracin N and the aminosugar 1-deoxynojirimycin, their permanence in the raw material confirms the viability of using this waste even after industrial processing, which allows adding value to the species productive chain. The analysis of the antioxidant capacity showed an important action of ethanolic extract in the face of DPP? and ABT?+ radicals solutions, with IC50 23.71 and 5.79 µg/mL respectively, which suggests being related to its abundant phenolic composition, thus, indicating a possible bioproduct in the combat the effects caused by oxidative stress, in addition to its application in cosmetics, pharmaceuticals, stabilizing additives or even as a raw material for obtaining bioactive molecules in secondary processes.  相似文献   

9.
The glucocorticoid derivative of budesonide with a phthalimide group is a drug candidate to treat inflammatory eye diseases; nevertheless, it presents low water solubility. Drug nanocrystals have been proposed to overcome this hurdle. The development of an innovative ophthalmic anti-inflammatory nanosuspension was performed using a design space approach. We obtained the particle size reduction of this glucocorticoid derivative on a nanometer scale (approximately 165.0 nm), applying wet bead milling on a super reduced scale. The design of experiment supported the optimization of the formula evaluating the parameters that influence reducing the particle size and also allowed determining the design space. Considering the two statistical models developed and the size range obtained, we proposed that the optimized formulation for the glucocorticoid derivative nanosuspension may be 1.0 wt% glucocorticoid derivative and 0.092 wt% cetylpyridinium chloride. This formulation was characterized by the morphological, physical–chemical, and mucoadhesive in vitro test and showed potential for ophthalmic use with reduced frequency of product application, improved efficiency, and safety, which may promote better patient compliance.  相似文献   

10.
Microfluidic and electrochemical technologies have been at the forefront of the development of emerging analytical microsystems. Microfluidics and electrochemistry show a synergistic relationship, empowering their inherent features. Thus, integration of microfluidics and electrochemical (bio)sensors is envisioned as a powerful tandem for boosting the next generation of lab-on-a-chip platforms, including point-of-care and point-of-need systems. In this review, a general overview of the advantages, drawbacks, and gaps as well as remaining challenges and future trends of coupling microfluidics and electrochemical cells is presented. Special attention is given to the manufacturing and scale-up of the integrated devices and all those aspects that can push on the development of true lab-on-a-chip platforms for reaching the industrial domain and actual commercialization.  相似文献   

11.
Ethnopharmacological relevanceMetabolic syndrome is closely related to the intestinal microbiota and disturbances in the host metabolome. Hyperuricemia (HUA), a manifestation of metabolic syndrome, can induce various cardiovascular diseases and gout, seriously affecting a patient’s quality of life. Astragalus membranaceus has a long history as a commonly used traditional Chinese medicine to treat kidney disease in China and East Asia.Materials and methodsWe compared the therapeutic effect of benzbromarone and two different doses Astragalus membranaceus ultrafine powder (AMUP) in rats with HUA. Ultra-performance liquid chromatography-mass spectrometer was used to analyze the AMUP metabolism in the plasma, urine, and feces. Further, 16S ribosome RNA sequencing and feces metabolomic were performed to capture the variation of the gut microbiota and metabolites changes before and after drug administration.ResultsAMUP had a notable impact on reducing blood uric acid levels while protecting the liver and kidney. Drug metabolism analysis demonstrated that effective constituent flavonoids are distributed in the blood, whereas saponins remain in the intestine. Gut microbiota analysis showed that low-dose AMUP ameliorated HUA-induced gut dysbiosis by reducing the abundance of harmful bacteria and increasing that of some beneficial bacteria with anti-inflammatory properties, such as Clostridia, Lachnospiraceae, and Muribaculaceae. In addition, HUA-induced changes in metabolite contents in bile acid and adrenal hormone biosynthesis pathways were restored after treatment with AMUP.ConclusionLow-dose AMUP exerts remarkable therapeutic effects on HUA by regulating the gut microbiome and mediating gut metabolism pathways associated with uric acid excretion.  相似文献   

12.
Halogenated inhibitors showed robust, reversible, and selective monoamine oxidase-B (MAO-B) inhibitory efficacy in candidates that were derived from them. Our team has previously synthesized and assessed a panel of halogenated chalcones and coumarin for the study on MAO-B inhibition. The aim of this study was to build GA-MLR based QSAR models and predictive 3D Pharmacophore models, as well as to investigate the relationship between halogenated derivatives and MAO-B inhibitory activity. The robust statistical significance in the parameter (R2 = 0.78 and Q2 = 0.69) was demonstrated. Best Hypo1 contains one hydrophobic and two aromatic rings. The lead molecule for quantum mechanics was performed, and it was revealed that it would bind to proteins and provide stability. To determine the stability of the ligand-enzyme complex, a thorough molecular dynamics analysis of the lead compounds was accomplished.  相似文献   

13.
Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble “mystery boxes”. Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.  相似文献   

14.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   

15.
Due to the presence of various phenolic compounds in D.sophia, this plant may have an inhibitory effect on α-Glc and ultimately diabetes control. Therefore, this work aims to scrutinize total phenolic, flavonoid contents, antioxidant capacity, and α-Glc inhibitory activity in aerial parts of methanolic D.sophia extract. The methanolic flower extracts were selected from among aerial parts for the experimental study of anti-diabetic effects by α-Glc inhibitory assays. The flower extracts were also studied by GC/MS to detect the compounds. The total phenolic and flavonoid contents were 21.38 ± 0.93 GAE/g and 96.2 ± 0.20 QE/g, respectively. The IC50 value of flower extract for α-Glc inhibition with mixed (Competitive/non-competitive) mode was found to be 20.34 ± 0.11 mg/ml. Furthermore, in-vivo studies showed that the blood glucose level reduced after consumption of flower extract compared to the control group. Twenty-one compounds were identified by GC/MS technique. These compounds were assessed for high docking scores against α-Glc in silico. Docking score calculations exhibited that the DES-α-Glc complex had a significantly higher binding energy (-6.13 Kcal/mol) than other compounds. The DES-α-Glc complex which displayed a higher docking energy value than the ACR was subjected to MDs studies. The findings of this study suggest that the flower extract of D.sophia can be used as a suitable additive in syrups or foods with anti-diabetic capacity.  相似文献   

16.
In this study, a fingerprint-activity relationship modeling between chemical fingerprints and antirheumatic activity was established, and multivariate statistical analysis was used to evaluate the quality of Taxilli Herba (TH) from different hosts. Characteristic fingerprints of 20 batches of TH samples were generated by high-performance liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (HPLC-Triple TOF-MS/MS), and the similarity analysis was calculated based on thirteen common characteristic peaks by hierarchical clustering analysis (HCA). Subsequently, nine efficacy markers were discovered by combining fingerprints and antirheumatic activity through grey correlation analysis (GCA) and bivariate correlation analysis (BCA). Meanwhile, the content of 5 constituents in 9 markers was determined by high-performance liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (HPLC-QTRAP-MS/MS). The comprehensive quality of TH was assessed using multivariate statistical analysis, including principal components analysis (PCA) and technique for order preference by similarity to ideal solution (TOPSIS). The results showed that a high dose of TH extract could markedly ameliorate arthritis damage compared to other doses, with flavonoids playing an important role in the antirheumatic activity. The comprehensive quality of samples from Morus alba L. (SS) was superior to those from Liquidambar formosana Hance (FXS). The present study will demonstrate the markers associated with efficacy, and provide an applicable strategy for more comprehensive quality control and evaluation of TH.  相似文献   

17.
18.
The impregnation of magnetite (Mt) nanoparticle (NPs) onto Musa acuminata peel (MApe), to form a novel magnetic combo (MApe-Mt) for the adsorption of anionic bromophenol blue (BPB) was studied. The SEM, EDX, BET, XRD, FTIR and TGA were used to characterize the adsorbents. The FTIR showed that the OH and CO groups were the major sites for BPB uptake onto the adsorbent materials. The average Mt crystalline size on MApe-Mt was 21.13 nm. SEM analysis revealed that Mt NPs were agglomerated on the surface of the MApe biosorbent, with an average Mt diameter of 25.97 nm. After Mt impregnation, a decrease in BET surface area (14.89 to 3.80 m2/g) and an increase in pore diameter (2.25–3.11 nm), pore volume (0.0052–0.01418 cm3/g) and pH point of zero charge (6.4–7.2) was obtained. The presence of Pb(II) ions in solution significantly decreased the uptake of BPB onto both MApe (66.1–43.8%) and MApe-Mt (80.3–59.1%), compared to other competing ions (Zn(II), Cd(II), Ni(II)) in the solution. Isotherm modeling showed that the Freundlich model best fitted the adsorption data (R2 > 0.994 and SSE < 0.0013). In addition, maximum monolayer uptake was enhanced from 6.04 to 8.12 mg/g after Mt impregnation. Kinetics were well described by the pseudo-first order and liquid film diffusion models. Thermodynamics revealed a physical, endothermic adsorption of BPB onto the adsorbents, with ΔHo values of 15.87–16.49 kJ/mol, corroborated by high desorption (over 90%) of BPB from the loaded materials. The viability of the prepared adsorbents was also revealed in its reusability for BPB uptake.  相似文献   

19.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

20.
This review is provided a detailed overview of the synthesis, properties and applications of nanoparticles (NPs) exist in different forms. NPs are tiny materials having size ranges from 1 to 100 nm. They can be classified into different classes based on their properties, shapes or sizes. The different groups include fullerenes, metal NPs, ceramic NPs, and polymeric NPs. NPs possess unique physical and chemical properties due to their high surface area and nanoscale size. Their optical properties are reported to be dependent on the size, which imparts different colors due to absorption in the visible region. Their reactivity, toughness and other properties are also dependent on their unique size, shape and structure. Due to these characteristics, they are suitable candidates for various commercial and domestic applications, which include catalysis, imaging, medical applications, energy-based research, and environmental applications. Heavy metal NPs of lead, mercury and tin are reported to be so rigid and stable that their degradation is not easily achievable, which can lead to many environmental toxicities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号