首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
以甘蔗渣为原材料,在限氧条件下经600℃碳化制备生物炭RC,经800℃碳化制备生物炭HC,分别研究两者对Cr (Ⅵ)的吸附-还原反应。采用扫描电子显微镜-能谱(SEM-EDS)、比表面积和孔隙分析(BET)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和拉曼光谱(RS)等对甘蔗渣生物炭表面性质进行表征,从吸附等温线、吸附动力学等角度探讨甘蔗渣生物炭对Cr (Ⅵ)的吸附-还原反应特征及其机理。结果表明:甘蔗渣生物炭具有丰富的孔隙结构和表面活性基团,且随着碳化温度升高,甘蔗渣生物炭表面孔隙度和芳香化程度增加,而含氧官能团OH、C O等相对含量则降低。HC对Cr (Ⅵ)的吸附-还原去除效果最好,总去除量高达117.28 mg·g-1,较RC增加了82.42 mg·g-1,其中吸附反应的去除量为76.00 mg·g-1,比RC增加了67.99 mg·g-1。随着碳化温度升高,生物炭缺陷程度降低,电子传递能力增强。HC对Cr (Ⅵ)的还原量为87.40 mg·g-1,较RC增加了57.03 mg·g-1。吸附等温线和吸附动力学拟合结果显示,甘蔗渣生物炭对Cr(Ⅵ)的吸附更符合拟二级动力学模型。Langmuir模型适用于HC对Cr(Ⅵ)的吸附,Freundlich模型适用于RC对Cr (Ⅵ)的吸附。XPS和FTIR分析结果显示,甘蔗渣生物炭对Cr (Ⅵ)的去除机理为静电吸附、还原和络合作用,其中RC、HC吸附作用的相对贡献率分别为22.98%、64.80%,还原反应的相对贡献率分别为87.12%、74.52%,表明甘蔗渣生物炭对Cr (Ⅵ)的去除过程以还原为主。  相似文献   

2.
以农业废弃物核桃壳为原料制备生物炭,运用红外光谱分析发现其含有丰富的羟基、烷基、芳香基等官能团。将其应用于水体中Cr(Ⅵ)吸附研究,结果表明,核桃壳生物炭对Cr(Ⅵ)的吸附去除效果受热解制备温度、溶液pH值、生物炭投加量、Cr(Ⅵ)初始浓度和吸附时间影响显著,但吸附时溶液温度对其吸附效果影响较小。在25℃、pH值4.0、核桃壳生物炭投加量1.0 g/L、Cr(Ⅵ)初始浓度为40 mg/L时,约210 min后能达到吸附平衡,其去除率可达95.77%。动力学研究发现,核桃壳生物炭吸附Cr(Ⅵ)符合准二级动力学模型,吸附初期属于液膜扩散过程,之后属于颗粒内扩散过程。热力学研究表明,核桃壳生物炭吸附Cr(Ⅵ)为吸热的自发过程,符合Langmuir的单分子层吸附模型。  相似文献   

3.
针对高毒性含铬废水处理难、水华藻类资源化利用率低等问题,本研究拟制备膨润土改性微囊藻基生物炭(BMC),使用扫描电镜、X射线衍射和比表面积分析等方法对使用膨润土改性前后的微囊藻基生物炭的属性进行表征,研究初始pH、生物炭投加量对改性前后微囊藻基生物炭吸附Cr(Ⅵ)效果的影响,并对吸附过程进行动力学和等温模型拟合。结果表明,膨润土改性后微囊藻基生物炭表面官能团和阳离子交换容量均大幅增加,改性前后微囊藻基生物炭对Cr(Ⅵ)的吸附过程均符合准二级动力学模型和Langmuir等温模型;在pH=2、投加量为2 g/L的试验条件下,改性微囊藻基生物炭对Cr(Ⅵ)的饱和吸附容量达到10.87 mg/g,是改性前微囊藻基生物炭(MC)饱和吸附容量的3.94倍,微囊藻基生物炭改性后显著促进了对Cr(Ⅵ)的吸附;静电吸附和氧化还原作用是微囊藻基生物炭去除Cr(Ⅵ)的主要机制。本研究成果可为含铬废水处理提供新方法,并可为水华藻类的资源化利用提供新思路。  相似文献   

4.
皇竹草生物炭的结构特征及其对Cr(Ⅵ)的吸附性能   总被引:2,自引:0,他引:2  
以皇竹草茎秆为原料,在限氧控温(300、500、700℃)条件下制备生物炭,研究该生物炭的结构特征及其对Cr(Ⅵ)的吸附行为。结果发现,随着热解温度的升高,皇竹草生物炭的产率下降,而灰分、p H呈上升趋势;电镜扫描(SEM)观察可见不同热解温度下所制备的生物炭结构相似,均具多孔和管状结构,但在700℃条件下所制备的生物炭相对300℃下制备的生物炭孔壁变薄,且孔壁有附着物,切面有突起结构。三种温度下制备的皇竹草生物炭对溶液中的Cr(Ⅵ)都具有较好的吸附作用,且500、700℃下制备的生物炭比300℃下制备的生物炭具有更好的吸附效果。在0~1 h之间,三种热解温度下制备的生物炭对铬的吸附量均随着时间的延长而快速增加,当吸附至1 h时,基本达到饱和状态,随后吸附量无明显变化。  相似文献   

5.
以玉米秸秆为原料,在300、450℃和600℃下裂解得到3种生物炭,通过批处理实验讨论了溶液初始pH值和裂解温度对玉米秸秆及其生物炭吸附Cr(Ⅵ)的影响,并用吸附动力学模型和等温吸附模型对实验结果进行拟合。结果表明:对于同种吸附材料而言,溶液初始pH值越低,玉米秸秆及其生物炭对Cr(Ⅵ)的吸附量越大;当溶液初始pH值为3或5时,对Cr(Ⅵ)的吸附性能大小顺序为:玉米秸秆 > 生物炭300℃ > 生物炭450℃ > 生物炭600℃;当溶液初始pH=1时,对Cr(Ⅵ)的吸附性能大小顺序为:生物炭300℃ > 玉米秸秆 > 生物炭450℃ > 生物炭600℃,且生物炭300℃对Cr(Ⅵ)的最大吸附量约为141.24 mg·g-1。可见,溶液初始pH值越低,生物炭的裂解温度越低,越有利于生物炭对Cr(Ⅵ)的吸附。  相似文献   

6.
将普通和磷酸改性后的核桃壳对Cr(Ⅵ)的吸附作用进行对比。实验结果表明,由于改性核桃壳表面结构孔隙率更大,有利于增强对Cr(Ⅵ)的吸附作用,当控制温度为35℃,吸附剂用量为0.80 g,吸附时间为120min,吸附50 ml Cr(Ⅵ)浓度为20 mg/L的水样时,Cr(Ⅵ)的去除率可以达到99.4%。对吸附等温线和动力学模型拟合后表明,Langmuir吸附等温模型能更好地反映改性核桃壳对Cr(Ⅵ)的吸附过程;且普通和改性核桃壳对Cr(Ⅵ)的吸附过程均符合拟二级动力学方程。  相似文献   

7.
改性花生壳吸附废水中Cr(Ⅵ)条件的优选试验   总被引:1,自引:0,他引:1  
刘智峰  李旭 《安徽农业科学》2010,38(29):16498-16500
[目的]研究改性花生壳对废水中Cr(Ⅵ)的吸附性能。[方法]用磷酸溶液对花生壳进行改性处理,制备不同浓度的Cr(Ⅵ)溶液,采用单因素试验研究Cr(Ⅵ)初始浓度、改性花生壳投加量、pH值、反应时间对吸附率的影响,并通过正交试验优化改性花生壳对废水中Cr(Ⅵ)的吸附条件。[结果]极差分析可知,在影响吸附效果的因素中,pH值的影响最大,投加量和反应时间次之,Cr(Ⅵ)初始浓度的影响最小。最佳吸附条件为:pH值为2.0,Cr(Ⅵ)浓度为40mg/L,花生壳粉末投加量为30g/L,反应时间为100min,对Cr(Ⅵ)的吸附率可达96.81%。改性花生壳对含Cr(Ⅵ)废水的吸附性能明显高于未改性花生壳。[结论]该研究为花生壳的综合利用和含Cr(Ⅵ)废水的处理研究提供有价值的参考。  相似文献   

8.
为探究可生物降解螯合剂氨三乙酸(NTA)替代乙二胺四乙酸二钠(EDTA)在复配淋洗剂中的作用,本文研究了NTA和EDTA与草酸和酒石酸所配制的复配淋洗剂在不同浓度、固液比、pH值和淋洗时间下对Cr(Ⅵ)污染土壤淋洗效果的影响及淋洗动力学,此外还使用顺序提取方案(BCR)分析了淋洗前后土壤中重金属的形态、迁移率和稳定性变化。结果表明:混合等体积的0.25 mol·L-1NTA和0.3 mol·L-1草酸在固液比为1∶9、pH为3、淋洗时长为240 min条件下达到最大Cr(Ⅵ)去除效率82.94%,这与使用EDTA淋洗时的效率相近;该复配淋洗剂淋洗Cr(Ⅵ)污染土壤时的动力学符合拟二级动力学方程;BCR实验结果表明,NTA和草酸复配淋洗后土壤中Cr的弱酸可提取态、可氧化态和残渣态组分含量分别从6 346.67、4 280.00、2 387.67 mg·kg-1下降至1 161.67、433.35、741.00 mg·kg-1,可还原态组分从2 746.67 mg·kg-1上升至6...  相似文献   

9.
为了更好地处理废水中的Sb(Ⅴ),利用三价铝和高锰酸钾对生物炭进行改性,并使用比表面积(BET法)分析、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)表征改性前后的生物炭。通过对生物炭投加量、反应时间、Sb(Ⅴ)初始浓度、pH值进行研究,拟合分析试验数据,探究3种生物炭的吸附特性与吸附机理。结果表明,25℃下,固液比为1 g∶400 mL,反应时间为4 h,pH值为2时,原炭(BC)、Al~(3+)改性的生物炭(Al-BC)和高锰酸钾改性生物炭(KMnO_4-BC)对Sb(Ⅴ)的最大吸附量分别为4.41、10.48、30.06 mg/g,三者吸附量均整体随pH值的增大而逐渐减小。3种生物炭等温吸附曲线符合Langmuir等温模型,BC和KMnO_4-BC吸附动力学过程遵循拟二级动力学方程,Al-BC吸附符合拟一级动力学方程。生物炭吸附过程为以物理吸附行为主的物理-化学复合过程。BET比表面积分析结果表明,Al-BC比表面积及总孔体积最大,KMnO_4-BC粒径较小且其表面附着的晶体提高其吸附能力。FTIR结果表明,改性前后生物炭表面官能团差别不大。  相似文献   

10.
分析了模拟Cr(Ⅵ)污水灌溉对水稻不同生育时期土壤微生物生物量及生物活性的影响,结果表明:(1)微生物生物量碳、生物量氮、基础呼吸作用、脲酶活性以及反硝化活性均与Cr(Ⅵ)灌溉浓度呈显著或极显著的负相关性,过氧化氢酶活性与Cr(Ⅵ)灌溉浓度呈显著或极显著的正相关,氨化作用在低浓度Cr(Ⅵ)(10mg·L-1)污灌下明显增强而在高浓度Cr(Ⅵ)(50mg·L-1)污灌下明显减弱;其中微生物生物量碳、生物量氮、基础呼吸强度以及脲酶活性与Cr(Ⅵ)灌溉浓度负相关性较好且在水稻各生育期均比较稳定,是水稻土Cr(Ⅵ)污染评价灵敏的生物学指标.(2)水稻不同生育时期土壤微生物生物量及生物活性对Cr(Ⅵ)污灌处理的敏感性存在差异,其中微生物生物量碳、生物量氮、反硝化活性、过氧化氢酶以及脲酶活性对Cr(Ⅵ)污灌敏感性总体上表现为生育前期高于生育后期.(3)加Si处理明显缓解Cr(Ⅵ)对土壤生物量碳、生物量氮、基础呼吸强度以及反硝化作用的抑制,但促进了Cr(Ⅵ)对土壤脲酶活力的抑制以及对土壤过氧化氢酶活力的刺激作用.  相似文献   

11.
12.
选择工业固体废物附近的农田土壤,研究共存金属离子、无机盐、有机质、pH值及温度对土壤吸附Cr(Ⅵ)和As(Ⅴ)的影响.结果表明,在众多影响因素中,pH值和KH2PO4是对Cr(Ⅵ)和As(Ⅴ)吸附影响最明显的两个因素,pH值的升高(2.0~8.0)和KH2PO4(0.01~1.0 mol·L-1)的存在不利于Cr(Ⅵ)和As(Ⅴ)的吸附.利用土柱淋溶实验考察pH值和KH2PO4对Cr(Ⅵ)和As(Ⅴ)在土壤中迁移、转化的影响发现,较高的pH值(7.0)和KH2PO4(0.1 mol·L-1)的存在有利于Cr(Ⅵ)和As(Ⅴ)的迁移.低pH(4.0)下的淋溶增加了土壤中交换态Cr和As的相对和绝对含量,提高了重金属的生物可利用性.高pH(7.0)及KH2>PO4>存在时的淋溶减小了交换态Cr和As的含量,降低了重金属的生物可利用性.淋溶实验后,土壤中分别平均有95%的Cr(Ⅵ)和11%As(Ⅵ)发生了还原反应生成了Cr(Ⅲ)和As(Ⅲ).从而在一定程度上降低了Cr(Ⅵ)和As(Ⅴ)的迁移性.  相似文献   

13.
分别在300、500℃和700℃下制备水稻、小麦和玉米秸秆生物炭,对比以不同类型生物炭为载体制备的炭基硫酸盐还原菌(SRB)对Cr(Ⅵ)的吸附效应,筛选出吸附效果最佳的炭基菌剂。采用扫描电镜、傅里叶红外光谱和比表面积测试仪对生物炭进行表征分析,研究了溶液pH、吸附时间、生物炭添加量和Cr(Ⅵ)初始浓度对炭基SRB吸附Cr(Ⅵ)的影响,并结合吸附动力学和等温吸附模型探讨其对Cr(Ⅵ)的吸附过程及作用机制。结果表明:以700℃限氧热解小麦秸秆(XM700)为载体制备的炭基SRB(IBXM700)对Cr(Ⅵ)的吸附效果最佳,其最佳吸附条件为pH=5、生物炭添加量0.6 g·100 mL~(-1)、吸附时间24 h、Cr(Ⅵ)的初始浓度100 mg·L~(-1);IBXM700对Cr(Ⅵ)的吸附更符合拟一级动力学,以离子交换和表面物理吸附为主,以化学吸附作用为辅,其等温吸附符合Langmuir模型,属于单分子层吸附;SRB能还原SO_4~(2-)为S~(2-),或分泌还原酶将Cr(Ⅵ)还原为Cr(Ⅲ),从而达到去除目的。研究表明,IBXM700去除Cr(Ⅵ)的主要机制为吸附作用与还原作用。  相似文献   

14.
采用浸渍法制备了4种不同的生物炭-铁锰氧化物复合材料(F1M1BC10,F1M3BC20,F1M4BC25,F3M1BC20),采用SEM,XPS和 FTIR表征方法分析了几种复合材料与生物炭表面性质的差异,比较了4种不同配比生物炭-铁锰氧化物复合材料对砷(Ⅲ)去除性能,分析了不同投加量的吸附材料对砷(Ⅲ)去除效率及吸附量的差异。结果表明,与生物炭相比,炭、铁和锰不同配比的生物炭-铁锰氧化物复合材料比表面积明显增大,由61.0 m2·g-1增加到208 m2·g-1,孔径变小,由23.7 nm下降到2.76 nm;碱性官能团含量明显增加;材料表面形成了MnOx、FeOx。与生物炭相比,4种生物炭-铁锰氧化物复合材料对砷(Ⅲ)的动力学吸附量大小与去除率顺序依次为F1M4BC25 > F1M3BC20 > F1M1BC10 > F3M1BC20 > BC。F1M4BC25(m铁∶m锰∶m炭=1∶4∶25)是去除砷(Ⅲ)最优的复合材料,在用量为0.016 g·mL-1时,对砷(Ⅲ)的去除率可达82.6%,是生物炭去除率的2.3倍。研究表明,生物炭-铁锰氧化物复合材料是一种潜在的去除水体砷污染的炭基材料。  相似文献   

15.
为研究纳米零价铁改性生物炭(nZVI-BC)对土壤镉(Cd)的长效稳定机制,特别是生物炭(BC)老化过程中nZVI-BC与Cd的界面相互作用,本研究以玉米秸秆为原料制备了nZVI-BC,采用批吸附与养护试验相结合的方法并利用现代光谱分析手段探究了nZVI-BC对液相Cd (Ⅱ)的吸附和对土壤中Cd的稳定化效果与作用机制。结果表明: nZVI负载显著提高了生物炭对Cd (Ⅱ)的吸附能力,nZVI-BC对Cd (Ⅱ)的饱和吸附量是BC的4.3倍(125.5 mg·g-1 vs 23.61 mg·g-1)。nZVI-BC对Cd (Ⅱ)的吸附更符合伪二级动力学方程,吸附过程以化学吸附为主;其等温吸附更符合Langmuir模型,属于单层吸附。随着养护时间的增加,生物炭表面的Cd负载量逐渐增加,老化后BC表面形成的含氧官能团是Cd饱和吸附力增加的主要原因。相比而言,nZVI-BC上Cd的负载量呈先增加后逐渐降低的趋势。沉淀与表面络合是nZVI-BC固定土壤中Cd的主要机制,而Fe含量的降低和Fe的氧化则是导致其Cd固定量降低的主要原因。尽管如此,nZVI-BC对Cd的吸附仍保持在较高水平且远高于BC。综上所述,nZVI-BC可以作为一种能够适用于中度污染农田中Cd修复的高效稳定化材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号