首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yttria stabilized zirconia thick coatings were thermally sprayed from two different feedstock powders. Coating characteristics such as density, crystalline phase composition, and microstructure were evaluated. The thermal expansion coefficient and thermal diffusivity were measured as a function of temperature up to 800 °C and analyzed in terms of the microstructural features. The ability of available models to relate the measured thermal properties to the microstructural features as characterized by readily available methods was assessed. The importance of pore shape and orientation on the thermal conductivity was evidenced. The thermal contact resistance between the substrate and the coating in these samples was estimated from the thermal diffusivity data, and found to change during cooling from 800 °C.  相似文献   

2.
Nanostructured 8 wt.% CeO2-5.4 wt.% Y2O3-ZrO2 (CeYSZ) coatings were prepared by atmospheric plasma spraying technology. The microstructure, thermal diffusivity, and thermal cycle behavior of CeYSZ were investigated. The results show that the as-sprayed nano-CeYSZ coatings consist of tetragonal ZrO2 and Ce element is in solid solution with ZrO2. The CeYSZ coatings are characterized by nano-zones (unmelted nanoparticles), melted dense areas, splats, and pores. The thermal diffusivity of nano-CeYSZ coatings is 0.548 × 10?6 m2/s at room temperature. The addition of CeO2 decreases the thermal diffusivity of nano-YSZ coatings, which is mainly caused by the point defect scattering and grain-boundary scattering. The thermal cycle life of nano-CeYSZ coatings is about 860 cycles at 1050 °C. The spallation of the coatings occurs at the interface of CeYSZ/TGO.  相似文献   

3.
目的对LED封装用铝基板表面进行微弧氧化处理,用以调控其界面的导电导热行为,并构建微弧氧化膜的厚度与其导电性及导热性之间的关联性。方法采用XRD表征了不同厚度微弧氧化膜的相结构,借助SEM观察了不同厚度膜层的表面微观形貌,利用高阻计测试了不同外加电压下膜层的电阻率,采用闪光法测定了不同温度下膜层的热扩散系数。结果微弧氧化膜主要由γ-Al_2O_3相组成,随膜层厚度的增加,膜层的相结构无显著变化,但其表面多孔结构出现了明显变化。膜层电阻率随膜厚的增大而升高,在膜厚从10μm增至40μm的过程中,电阻率增大了4~8倍。膜层电阻率随测试电压的升高而降低,当测试电压从50 V升至100 V时,电阻率降幅达1~2个数量级。膜层的热扩散系数随膜厚的增大出现波动,当膜厚为10~40μm时,热扩散系数的变化量为21.6~24.8 m~2/s。膜层热扩散系数随测试温度的升高而降低,降幅最高可达8.9 m~2/s。结论厚度为40μm的微弧氧化膜既具有高的电阻率(7.1×1012?·cm),又具有高的热扩散系数(98.0 m~2/s),有望满足LED铝基板的界面绝缘与散热要求。  相似文献   

4.
Wollastonite coatings were deposited using an atmospheric plasma spraying technique. The microstructure and phase compositions of the coating before and after heat treatment were investigated using scanning electron microscopy (SEM), x-ray diffraction (XRD), and differential thermal analysis (DTA) technologies, respectively. In addition, the coefficient of thermal expansion and thermal diffusivity of the coating were also investigated. Crystalline wollastonite, glassy phase, and tridymite (SiO2) were observed in the coating. Tridymite (SiO2) likely reacted with other composites such as CaO and glassy phase to form crystalline wollastonite when the coating was heated at about 882 °C. During the first thermal cycle, the coefficient of thermal expansion of the coating decreased dramatically between 700 and 850 °C and the thermal diffusivity of the coating was 2.7–3.1 × 10−3cm2/s between 20 and 1000 °C. During the second thermal cycle, the coefficient of thermal expansion of the coating increased slightly between room temperature and 1000 °C and the thermal diffusivity of the coating increased by about 20% compared with that of the first thermal cycle. The atmospheric plasma sprayed Wollastonite coating may be used as thermal barrier coating.  相似文献   

5.
Nanostructured Ti–B–N and Ti–Si–B–N coatings were deposited on silicon substrate by ion implantation assisted magnetron sputtering technique. To evaluate the oxidation resistance and thermal stability the coatings were annealed on air and in vacuum at 700–900°C. As-deposited and thermal-treated coatings were investigated by transmission electron microscope, selected area electron and x-ray diffraction, atomic force microscopy, Raman and glow discharge optical emission spectroscopy. Nanoindentaion tests were also performed. Obtained results show that Si alloying significantly improves the thermal stability of Ti–B–N coatings and increases their oxidation resistance up to 900°C. It was shown that formation of protective amorphous SiO2 top-layer on the coating surface plays important role in the increasing of the oxidation resistance.  相似文献   

6.
FeCr-based nanostructured coatings were deposited on a 301S stainless steel substrate by the high-velocity arc spraying process in the current work. The oxidation behavior of the coatings exposed to elevated temperatures (700°C and 900°C) under laboratory conditions as well as in an actual industrial environment of a coal-fired boiler (at 700 ± 10°C) was investigated. X-ray diffraction, scanning electron microscopy/energy-dispersive analysis, and transmission electron microscopy techniques were used to characterize the coating as well as to analyze the corrosion products for elucidating the corrosion mechanisms. The microhardness of the coating was found to be 520–1100 HV. The (FeCr)-based nanostructured coating showed good adherence to the 310S substrate and excellent oxidation resistance during the exposures with no tendency for spallation of its oxide scales in both environments. The nanosized grain morphology of the coating facilitated the formation of protective scales, which is continuous, adherent, and nonporous due to the higher diffusivity of alloying elements in the coatings. It precludes high-temperature oxidation by acting as a diffusion barrier between the environment and the coating.  相似文献   

7.
目的研究等离子喷涂热障涂层微观组织与高温力学性能,为热障涂层在合金钢的应用及其失效机制提供理论支撑。方法采用等离子喷涂技术在30Cr Mn Si A钢基体上制备Ni Co Cr Al Y/YSZ热障涂层,利用扫描电镜显微观察、物相分析、热震试验、拉伸试验等技术方法,考察涂层在高温条件下的失效行为。结果合金钢等离子喷涂热障涂层为典型双层层片状结构,YSZ涂层仅含有稳定四方相。800℃时,涂层试样拉伸试验后的断裂载荷与无涂层试样相比高10%。热障涂层的抗热震性良好,经900℃热震循环试验10次后,涂层完好;经1000℃热震循环6次后,涂层剥落失效,剥落面位于粘结层与基体之间。热震循环过程中,钢基体被氧化甚至腐蚀。涂层试样边缘产生应力集中,随着热震次数的增加,裂纹逐渐扩展,最终导致涂层成块剥落。温度由700℃升至900℃,Ni Co Cr Al Y涂层硬度下降幅度大于YSZ涂层和30Cr Mn Si基体。结论粘结层与钢合金基体的热膨胀不匹配是导致热震试验涂层剥落的主要原因。热障涂层的隔热作用使涂层试样的基体温度较低,导致其断裂载荷与无涂层试样相比较高。  相似文献   

8.
Rare earth (RE)-modified NiCrAlY powders were prepared by ultrasonic gas atomization and deposited on stainless steel substrate by high-velocity oxygen fuel spraying. The effects of the RE on the microstructure, properties, and thermal shock resistance of the NiCrAlY coatings were investigated. The results showed that the NiCrAlY powders were refined and distributed uniformly after adding RE, while the number of unmelted particles in the coatings was reduced. Moreover, the RE-modified coatings showed improved microhardness and distribution uniformity. The microhardness of the coating reached a maximum after adding 0.9 wt.% RE, being 34.4 % higher than that of coatings without RE. The adhesive strength increased and reached a maximum after adding 0.6 wt.% RE, being 18.8 % higher than that of coatings without RE. Excessive RE decreased the adhesive strength. The thermal cycle life of NiCrAlY coatings increased drastically with RE addition. The coating with 0.9 wt.% RE showed optimum thermal shock resistance, being 21.2 % higher than that of coatings without RE.  相似文献   

9.
The oxidation resistance of Al‐rich coatings made by chemical vapor deposition and pack cementation was examined on representative ferritic‐martensitic (FM, e.g. Grade 91, Fe‐9Cr‐1Mo) and austenitic steel substrates at 650°‐800 °C. To evaluate the potential benefits and problems with these alumina‐forming coatings, oxidation exposures were conducted in a humid air environment where the uncoated substrates experience rapid oxidation, similar to steam. Exposure temperatures were increased to accelerate failure by oxidation and interdiffusion of Al into the substrate. The difference in the coefficient of thermal expansion (CTE) between coating and substrate was found to cause cracking and coating failure during rapid thermal cycling on thicker coatings with Fe‐Al intermetallic phases. Therefore, thinner coatings with less Al and a ferritic Fe(Al) structure were evaluated more extensively and tested to failure at 700° and 800 °C on FM steels. The remaining Al content at failure was measured and used to improve a previously developed coating lifetime model. At 700° and 800 °C, thin coated austenitic specimens continue to exhibit protective behavior at more than double the lifetime of a similar coating on FM steel. The longer lifetime was attributed to the ferritic coating‐austenitic substrate phase boundary inhibiting Al interdiffusion.  相似文献   

10.
Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix.  相似文献   

11.
1 Introduction The aluminum bronze coatings on steel substrate which are sprayed by electric arc process have been developed as possible new candidates for the use to high temperature applications, while their corrosion properties at high temperature in …  相似文献   

12.
Immersion tin is widely used as a lead free surface finish in the printed circuit board technology. Tin prevents the underlying copper from corrosion and preserves its solderability during a long storage and lead‐free assembly processes. Investigated immersion tin coatings were deposited on copper foil from thiourea‐type baths with hydrochloric acid addition (SnHCl coatings) or methanesulfonic acid addition (SnMSA coatings). Obtained coatings were investigated in the as deposited state and after aging (4 h at 155 °C, in air). The scanning electron microscopy studies revealed differences in structure of tin samples deposited from different baths. Results of polarization and impedance investigations indicated that as deposited SnHCl coatings had better corrosion resistance in 0.5 M NaCl solution than SnMSA coatings. The aging resulted in the improvement of the corrosion resistance of thinner coatings (0.2 and 0.5 µm thick SnHCl and 0.3 µm thick SnMSA), which were thoroughly converted into Sn–Cu intermetallic (IMC) phases. In contrary, thicker coatings exhibited some worsening of the corrosion resistance upon aging. The solderability of all as‐deposited tin coatings was acceptable, but decreased after aging, especially for thinner coatings, showing the through conversion into Sn–Cu IMC phases.  相似文献   

13.
Frictional behavior of nano and hybrid-structured NiAl-Cr2O3-Ag-CNT-WS2 adaptive self-lubricant coatings was evaluated at a range of temperatures, from room temperature to 700 °C. For this purpose, hybrid structured (HS) and nanostructured (NS) composite powders with the same nominal compositions were prepared by spray drying and heat treatment techniques. A series of HS and NS coating samples were deposited on steel substrate by an atmospheric plasma spraying process. The tribological behavior of both coatings was studied from room temperature to 700 °C at 100° intervals using a custom designed high temperature wear test machine. Scanning electron microscopy was employed for the evaluation of the composite coatings and worn surfaces. Experimental results indicated that the hybrid coating had inferior tribological properties when compared to the nanostructured coating, showing the attractive frictional behavior on the basis of low friction and high wear resistance; the NS coating possessed a more stable friction coefficient in the temperature range of 25-700 °C against alumina counterface. Microstructural examinations revealed more uniformity in NS plasma-sprayed coatings.  相似文献   

14.
Strontium zirconate (SrZrO3) thermal barrier coatings were deposited by solution precursor plasma spray (SPPS) using an aqueous precursor solution. The phase transition of the SrZrO3 coating and the influence of the aging time at 1400 °C on the microstructure, phase stability, thermal expansion coefficient, and thermal conductivity of the coating were investigated. The unique features of SPPS coatings, such as interpass boundary (IPB) structures, nano- and micrometer porosity, and through-thickness vertical cracks, were clearly observed evidently in the coatings. The vertical cracks of the coatings remained substantially unchanged while the IPB structures gradually diminished with prolonged heat treatment time. t-ZrO2 developed in the coatings transformed completely to m-ZrO2 phase after heat treatment for 100 h. Meanwhile, the SrZrO3 phase in the coatings exhibited good phase stability upon heat treatment. Three phase transitions in the SrZrO3 coatings were revealed by thermal expansion measurements. The thermal conductivity of the as-sprayed SrZrO3 coating was ~1.25 W m?1 K?1 at 1000 °C and remained stable after heat treatment at 1400 °C for 360 h, revealing good sintering resistance.  相似文献   

15.
The effects of heat treatment and gas atmosphere on thermal conductivity of atmospheric plasma sprayed (APS) and electron beam physical vapor deposited (EB-PVD) partially Y2O3 stabilized ZrO2 (PYSZ) thermal barrier coatings (TBCs) were investigated. Two-layer samples that had an EB-PVD coating deposited on bond coated nickel-base superalloy IN625 substrates, free-standing APS and EB-PVD coatings as well as a quasi-free-standing EB-PVD PYSZ coating (coating on semitransparent sapphire) were included in the study. Thermal diffusivity measurements for determining thermal conductivity were made from room temperature up to 1150 °C in vacuum and under argon gas using the laser flash technique. To investigate the effect of heat treatment on thermal conductivity, coatings were annealed at 1100 °C in air. For both the APS and EB-PVD PYSZ coatings the first 100 h heat treatment caused a significant increase in thermal conductivity that can be attributed to microstructural changes caused by sintering processes. Compared to the measurements in vacuum, the thermal conductivity of APS coatings increased by about 10% under argon gas at atmospheric pressure, whereas for the EB-PVD coatings, the influence of gas on thermal conductivity was relatively small. The effect of gas on the thermal conductivity of APS and EB-PVD PYSZ coatings can be attributed to amount, shape, and spatial arrangement of pores in the coating material.  相似文献   

16.
In this study, Ni-P coatings and sealing of the coatings by Ce-rich solution on Cf/Al composite surface for enhanced corrosion resistance are investigated. The corrosion resistance of uncoating sample in 3.5 wt.% NaCl solution was investigated and a comparison with Ni-P and Ce-sealed Ni-P coatings is given. Effect of Ce-sealing on Ni-P coating is discussed. The results of electrochemical measurements of corrosion performance of Cf/Al composites show that sealing of Ni-P coatings with Ce-rich solution can improve the corrosion resistance. The Ce-rich-sealed Ni-P coating has higher corrosion resistance than the coating without Ce, and the electroless plated Ni-P coating on composite surface has higher corrosion resistance than the bare sample, as evidenced by EIS and potentiodynamic polarization measurements. The microstructure of the Cf/Al composites and the two kinds of coatings (i.e., Ni-P coating and Ce-sealed Ni-P coating) were examined by scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. The Ce-sealed Ni-P coatings on Cf/Al composite surface have a total thickness of ~11 μm of which 10 μm is the thickness of the Ni-P coating and ~1 μm is the thickness of the Ce-rich sealing. It shows that the selected area electron diffraction ring pattern of Ce-rich sealing on Ni-P plated composite is consistent with Ce6O11 or CeO2. X-ray photoelectron spectroscopy results show that Ce4+ was the dominant oxidation state for Ce-rich sealing on Ni-P plated composite. The Ce-sealing treatment on Ni-P coating has improved the corrosion resistance over and above the corrosion resistance offered by the Ni-P mono-coating to the bare substrate.  相似文献   

17.
For thin (< 200 μm) air plasma spray (APS) and electron beam physical vapor deposition (EBPVD) ceramic thermal barrier coatings (TBCs), some non-destructive techniques indicate damage at the bond coat-TBC interface during either ageing or cyclic oxidation tests. However, no technique is available for thick (> 200 μm) APS TBCs.In this work, a semi-quantitative estimation of cracks at the interface of APS TBCs thicker than 300 μm is obtained from thermal diffusivity values measured by using a single side thermographic technique on coupons subjected to thermal cycling.In fact, during thermal cycling, two phenomena occur: sintering that promotes a significant increase of thermal diffusivity, and cracking that, representing an additional thermal resistance, causes an apparent decrease of thermal diffusivity.The idea presented hereinafter consists in removing the effects of sintering from apparent thermal diffusivity to estimate cracking at the interface.  相似文献   

18.
The variation in thermal conductivity and thermal diffusivity of ZrO2-4 mol% Y2O3 coatings deposited onto Inconel substrates by EB-PVD is examined as a function of coating thickness using the laser flash method. The coatings are found to consist of columnar grains with a feather-like microstructure. The thermal conductivities of the coatings are calculated using two methods: the first involves separating the coating from the substrate and measuring the thermal diffusivity directly; the second uses thermal diffusion results from coatings still attached to the substrate and is based on the response function method. The results of both methods are in excellent agreement, and show that the thermal conductivities of the coatings increase with increasing coating thickness. The results also confirm that the double layer method can be used successfully to calculate the thermal conductivities of thin film coatings.  相似文献   

19.
Spray parameters play an important role on the microstructure and properties of plasma-sprayed coatings. Parameters such as spray distance, plasma gas flow and current, raster speed, and spray angle all can be varied. In this paper, an integrated study to investigate the effects and influences of spray angle on properties of yttria-stabilized zirconia coatings was carried out with spray angles of 60°, 75°, and 90° (to the substrate surface). In situ coating property sensor based on beam curvature measurements was used to measure the evolving stress and elastic moduli of the resultant coatings and combined with other characterization tools for thermo-physical property and microstructure analysis, such as laser flash and scanning electron microscopy. The results indicate that the coating with 60° spray angle had the lowest thermal conductivity and more compliant structure. This study seeks to understand the mechanism for this effect and will provide important insight into parametric sensitivities on complex spray parts.  相似文献   

20.
Depositions of Al-11Si coatings reinforced with 5, 15, and 30 vol.% SiC particles (SiCp) were performed onto AZ31, AZ80, and AZ91D magnesium alloys. The influence of substrate composition and SiCp proportion on the anti-corrosion properties of composite coatings was evaluated using DC and AC electrochemical measurements in 3.5 wt.% NaCl solution at 22 °C. The as-sprayed coatings were permeable to the saline solution, and galvanic corrosion occurred at the substrate/coating interface after immersion in the saline solution for a few hours. The addition of SiCp yielded coatings with higher porosity and less effectiveness against corrosion. The application of a cold-pressing post-treatment produced denser coatings with reduced surface roughness, improved hardness, and superior corrosion resistance. However, galvanic corrosion was observed after several days of immersion because of penetration of the 3.5 wt.% NaCl solution through the remaining pores in the coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号