首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
以RDX为基的浇注PBX力学性能与本构模型   总被引:6,自引:5,他引:1  
为研究一种黑索今(RDX)基浇注高聚物粘结炸药(PBX)的力学性能与本构模型,利用INSTRON材料试验机及改进分离式Hopkinson压杆(SHPB)进行了准静态和动态单轴压缩实验,获得了材料在10-4~10-2s-1及843~1490 s-1应变率范围内的应力-应变曲线。结果表明:该浇注PBX的变形过程分为线性段、强化段和软化段。准静态加载下该浇注PBX具有明显的应变率效应,其弹性模量、压缩强度、临界应变与相对对数应变率之间近似呈线性关系;而在实验应变率范围内,动态加载下特别是加载初期应变率效应不明显,同时发现其破坏准则由应力控制,材料在12MPa附近发生破坏。借鉴推进剂及橡胶材料本构关系的研究结果,分别提出了能描述浇注PBX一维动、静态压缩力学行为的率相关本构模型,该模型与实验结果误差小于10%吻合较好。  相似文献   

2.
PBX炸药含裂纹扩展损伤的粘塑性本构关系   总被引:2,自引:1,他引:1  
成丽蓉  施惠基 《含能材料》2015,23(10):999-1003
为描述高聚物粘结炸药(PBX)的动态力学性能,将炸药内由微裂纹扩展引起的细观损伤,耦合到宏观粘塑性本构方程中,建立了含微裂纹扩展损伤的粘塑性本构关系。针对某PBX炸药,开展了单轴压缩及断裂性能实验,研究了材料本构参数及本构关系计算算法,嵌入到ABAQUS软件中,数值模拟了该PBX炸药不同应变率条件下的力学行为。与实验结果对比表明,含裂纹扩展损伤的粘塑性本构关系能够表征PBX炸药动态条件下力学性能变化过程,可用于冲击环境下炸药损伤演化分析研究。  相似文献   

3.
为研究高聚物粘结炸药(PBX)的准静态压缩行为,对两种典型配方(含铝粉与否)的浇注PBX替代材料在不同应变率下进行单轴准静态压缩试验,并对其力学性能进行了对比分析。同时基于朱-王-唐(ZWT)模型提出一种新模型来描述材料的准静态压缩行为,通过遗传算法获取本构模型参数,并使用Fortran语言在Abaqus有限元软件的用户材料子程序(UMAT)接口中进行本构模型的建立。结果表明:浇注PBX替代材料的准静态压缩过程可分为弹性压缩、应力衰减以及失稳破坏3个阶段;准静态压缩力学行为与应变率有明显的相关性,随着应变率的提高,材料的有效压缩应变基本不变,而压缩模量、屈服强度和压缩强度的对数与应变率对数近似呈现出线性关系;铝粉的加入使浇注PBX替代材料压缩模量、屈服强度和压缩强度均有所提升。新构建的本构模型能较好描述浇注PBX替代材料的准静态压缩行为,使用有限元软件对本构模型普适性进行验证,得到仿真计算结果与试验结果间可决系数R2均大于0.98,吻合程度较高。  相似文献   

4.
三种PBX炸药的动态拉伸力学性能   总被引:2,自引:2,他引:0  
为了获得几种PBX炸药的动态拉伸力学性能,结合平台巴西盘实验和霍普金森加载技术建立了动态拉伸实验测试系统,分别通过石英晶体片和数字图像相关方法来测量应力和应变信号,得到了PBX炸药在应变率102s-1附近间接拉伸条件下的应力应变曲线,并建立了对应的动态拉伸本构关系模型.结果表明,PBX炸药的拉伸强度、失效应变和拉伸弹性...  相似文献   

5.
为获得战斗部装药在高过载侵彻下的动力学行为,对战斗部装药(黑索今(RDX)基高聚物粘结炸药(PBX))在高应变率下的动态力学响应特性进行了研究。采用改进的分离式霍普金森压杆(SHPB) 实验技术对RDX基PBX炸药动态力学性能展开研究、压电传感器监测试件两端应力状态、高速相机拍摄实验中的试件变形过程,确保实验试件变形在动态应力平衡和常应变率加载条件下进行,保证实验数据的有效性。结果表明,该RDX基PBX炸药具有明显的密度效应及应变率效应,当应变超越0.075时应变率效应显著增强。基于应变能函数,建立该RDX基PBX炸药在一维应力状态下修正的Rivilin本构模型,模型拟合结果与实验结果基本相符,仿真结果得到的应变时间信号及试件变形模式与实验结果基本吻合。  相似文献   

6.
黄垂艺  时岩  金朋刚  陈凯 《含能材料》2022,30(3):188-196
为了对高聚物黏结炸药(PBX)在动态冲击载荷下可能产生的损伤进行研究,采用分离式霍普金森杆(SHPB)试验装置获得了PBX炸药材料在不同应变率条件下出现力学损伤的本构曲线,并基于含损伤变量的Z?W?T本构模型对本构曲线进行了分段拟合.然后基于拟合结果、有限元理论、弹塑性力学与ABAQUS/VUMAT语法编写了PBX炸药...  相似文献   

7.
浇注型PBX炸药的动态力学性能研究   总被引:5,自引:0,他引:5  
为了解浇注型PBX炸药在过载冲击环境下的动态力学性能,利用分离式Hopkinson压杆技术对典型浇注传爆药PBXN-110进行了相关试验研究,得到了相应的应力——应变关系曲线。同时,利用高速摄影及扫描电子显微技术观察了试验的宏观破坏过程及状态,并分析了试样的微观损伤模式,最终利用"朱-王-唐"模型拟合了该传爆药的本构关系曲线,拟合结果比较理想,可以作为PBXN-110传爆药动态力学性能的数学模型表达。  相似文献   

8.
李俊玲  王硕  傅华  谭多望  卢芳云 《含能材料》2019,27(10):824-829
高聚物粘结剂炸药(PBX)炸药的损伤本构关系是炸药安全性研究的重要基础课题之一。研究PBX炸药的损伤本构关系需要建立在准确获取和认识PBX炸药的动态力学响应基础之上。为此,针对某PBX炸药的SHPB实验,详细探讨加载方式的细节设计对PBX炸药力学响应的影响。通过采用不同应变加速度、不同加载脉宽以及重复加载等方法,分析了不同加载条件对PBX炸药力学响应的影响,并获得了一系列不同加载脉宽、不同加载应变率的应力应变曲线。采用扫描电镜观察回收试样最终损伤形态,分析了PBX炸药动态单轴压缩下的损伤发展过程及其在应力应变关系上的表现。结果表明:应变加速度过大仍会对PBX炸药形成一定的冲击加载,造成额外损伤;经历动态单轴压缩后破坏的试样表现为晶体多次穿晶断裂甚至碎裂;典型PBX炸药的损伤本构关系可从微裂纹的产生、稳定扩展,穿越晶界失稳扩展来描述。  相似文献   

9.
基于线性Drucker-Prager模型的PBX准静态弹塑性变形分析   总被引:3,自引:2,他引:1  
根据高聚物粘结炸药(PBX)的力学特性,将线性Drucker-Prager模型引入到PBX材料的弹塑性变形研究中。基于线性Drucker-Prager模型,结合经典塑性理论,分析了PBX准静态弹塑性变形过程。明晰了其后继屈服面的特征,推导了其刚度算法,构造了其弹塑性本构模型。从理论上分析了单轴压缩状态、双轴压缩状态条件下的应力应变关系。利用线性Drucker-Prager模型模拟了PBX材料的单元特性。结果表明,其单轴压缩模拟结果和双轴压缩模拟结果均与理论分析结果、实验数据一致。经对比,双轴压缩的极限强度是单轴的1.16倍,相应塑性应变是其0.5倍。  相似文献   

10.
对正火态的50SiMnVB钢常温下的准静态和动态力学特性进行测试,得出材料在不同应变率下的应力-应变曲线。根据Johnson-Cook模型,建立正火态50SiMnVB钢从准静态到动态较宽应变速率范围的物理本构方程。对比结果表明,所建立的本构方程和实验结果吻合较好。  相似文献   

11.
固体推进剂力学性能和本构模型的研究进展   总被引:3,自引:2,他引:1  
从力学性能的实验测试方法、力学性能参数的确定以及本构模型的构建三个方面,对固体推进剂力学性能和本构模型的研究进展进行了综述,并在此基础上提出了当前研究中存在的不足和需要进一步重点开展的研究。分析表明:动态加载条件下和多轴应力状态下固体推进剂力学性能的实验测试方法是目前研究中的难点,针对该问题可以借鉴其它应变率敏感性材料的测试方法;固体推进剂力学性能参数的确定方面缺乏针对不同应力状态下力学性能参数相互之间关系的讨论和分析,亟待通过借鉴其它非金属材料的研究方法 /手段和基本结论来解决这一问题;固体推进剂的本构模型研究与实际需求还存在较大的差距,特别是动态加载条件下的大变形非线性粘弹性本构,而基于宏观方法构建含损伤积分型非线性粘弹性本构模型的思想在解决该问题上具有较大的优势,可以成为今后研究的重点,但损伤函数的推导和求解是难点,需要研究者根据动态加载条件下固体推进剂的变形进行合理的分析。  相似文献   

12.
微纳米RDX颗粒级配对压装PBX性能影响   总被引:2,自引:2,他引:0  
肖磊  刘杰  郝嘎子  柯香  高寒  戎园波  刘巧娥  姜炜 《含能材料》2016,24(12):1193-1197
为了提高高聚物粘结炸药(PBX)的力学性能,降低其机械感度,采用溶液-水悬浮法,制备了含微纳米RDX不同颗粒级配(100/0,95/5,90/10,80/20)的PBXs。用光学显微镜观测其表观形貌,并测试了机械感度、力学性能以及爆速等性能。结果表明,微纳米RDX颗粒级配的PBX造型粉颗粒偏小、形貌规则、呈类球形。纳微米RDX颗粒级配为5/95的PBX性能最佳,撞击感度由44%降低到12%,摩擦感度由24%降低到4%;抗压强度从5.55 MPa提高到6.57 MPa,抗拉强度由0.66 MPa提高到0.77 MPa,抗剪强度由1.76 MPa提高到1.96 MPa;爆速从8033 m·s~(-1)增加到8186 m·s~(-1)。  相似文献   

13.
高聚物粘结炸药的力学行为及变形破坏机理   总被引:18,自引:11,他引:7  
陈鹏万  丁雁生 《含能材料》2000,8(4):161-164
结合实验研究对高聚物粘结炸药(PBX)的力学行为和细观力学现象进行了分析和讨论。认为PBX材料量主要的破坏机理是界面脱粘和粘结剂的成穴失效。  相似文献   

14.
高聚物粘结炸药(PBX)的应力应变曲线普遍存在非线性显著和对称性较差的特点,本构模型构建困难是炸药材料力学性能研究中的一个难题。以PBX‐901为研究对象,开展了不同温度下的单轴拉伸和单轴压缩试验,根据获得的S型应力应变曲线,基于Boltzmann函数分别推导建立了一种四参数本构模型和一种双参数本构模型。结果表明:较之于四参数本构模型,双参数本构模型的参数确定不需要参数拟合,仅采用压缩强度和初始段弹性模量解析求解的方式获取即可,描述精度误差低于5%。最后采用ANSYS软件的二次开发模块,实现了双参数本构模型在巴西圆盘试验中的数值模拟应用,试验结果和数值模拟结果的对比分析显示二者的相对误差仅5.11%,表明所建立的双参数本构模型的描述精度满足工程需要。  相似文献   

15.
准静态载荷下的拉伸压缩试验中,几乎所有高聚物粘结炸药(PBX)都体现出了明显的非线性本构行为,现常用的本构模型在描述这种非线性时适应性不甚理想.针对五种典型PBX炸药(PBX-X,PBX-9502,LX-17,PBX-9501,EDC-37)应力应变曲线的非线性及非对称性,基于Boltzmann函数推导了一种拉伸和压缩一起考虑的准静态单轴非线性四参数本构模型.在讨论模型待定参数物理意义的基础上,基于文中提出的待定参数初值确定方法,采用该本构模型对五种典型PBX的应力应变曲线进行了拟合.结果表明,该本构模型可较好地描述五种典型PBX炸药不同温度和应变率下的本构行为.基于Boltzmann函数的拉压非线性本构模型,有望作为一种适用于不同PBX的通用准静态本构模型广泛运用.  相似文献   

16.
合理的本构模型及正确的材料参数是进行有效数值计算以及靶标制备来表征生物软组织高速撞击下力学响应的前提方法。对典型的生物软组织及材料力学测试方法从单一加载模式拓展到剪切加载乃至混合加载进行了阐述,均进行详细的理论推导并得到各个模式下的主伸长。结果表明:基于各个加载模式下的主伸长,可以得到应力主面、形变最大值及方向来评估生物软组织及其对应仿生靶标的最大受力面及破坏程度等,便于深入探索生物软组织细观结构及模拟材料设计与其宏观力学性能相关性规律,旨在建立更加科学合理的人体仿生靶标。  相似文献   

17.
利用分离式霍普金森压杆对3种高速侵彻战斗部壳体材料的动态力学性能进行了研究,得到了3种壳体材料在高应变率条件下的力学性能,同时拟合出了3种材料各自的本构方程,为数值模拟和高速侵彻战斗部壳体材料的优选奠定了基础。  相似文献   

18.
为研究机械约束下炸药反应演化行为,加深对武器装药意外点火后反应烈度演化影响因素及机制的认识,对压装PBX炸药反应演化过程进行实验研究。设计一种机械约束装药点火实验装置,采用激光干涉仪和压力传感器分别测量壳体膨胀速度和内部压力,分析不同约束下两种HMX基压装PBX炸药装药的反应演化行为;结合空气冲击波超压测试结果和装置、炸药残骸回收分析,表征装药的反应烈度。研究结果表明:2 MPa机械约束下,PBX-1和PBX-2装药反应最高压力不超过200 MPa,壳体膨胀速度在70 m/s左右,装药反应烈度为爆燃;50 MPa机械约束下,PBX-1和PBX-2装药在百微秒甚至几十微秒内压力超过1 GPa,壳体膨胀速度达到500 m/s,装药发生爆炸反应;不同炸药的力学性能会造成装药反应演化过程存在一定差异,但机械约束影响更明显,新装置2 MPa和50 MPa机械约束装药反应压力和约束壳体速度相差接近1个数量级。  相似文献   

19.
具有高屈服强度的某装甲钢广泛应用于我国装甲车辆。为准确模拟该装甲钢的动态力学行为,开展基于Johnson-Cook(J-C)本构模型的动态本构参数标定及验证。采用万能材料试验机对该装甲钢进行不同温度下的准静态拉伸试验,同时采用分离式霍普金森压杆开展不同应变率下的压缩性能测试。基于实验数据和J-C本构模型,拟合得到该装甲钢的本构参数。基于轻气炮开展泡沫铝弹丸冲击均质梁的实验研究,分别采用J-C本构模型和理想弹塑性模型进行有限元仿真计算,并将冲击实验与数值结果进行对比分析。结果表明:该装甲钢具有应变率强化效应,且温度软化效应显著;采用J-C本构模型仿真的均质梁峰值挠度与试验结果的相对误差为1.7%~6.1%,残余挠度相对误差为0.6%~7.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号