首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which low affinity adhesion molecules function to produce stable cell-cell adhesion is unknown. In solution, the interaction of human CD2 with its ligand CD58 is of low affinity (500 mM-1) and the interaction of rat CD2 with its ligand CD48 is of still lower affinity (40 mM-1). At the molecular level, however, the two systems are likely to be topologically identical. Fluorescently labeled glycosylphosphatidylinositol-anchored CD48 and CD58 were prepared and incorporated into supported phospholipid bilayers, in which the ligands were capable of free lateral diffusion. Quantitative fluorescence imaging was used to study the binding of cell surface human and rat CD2 molecules to the fluorescent ligands in contact areas between Jurkat cells and the bilayers. These studies provide two major conclusions. First, CD2/ligand interactions cooperate to align membranes with nanometer precision leading to a physiologically effective two-dimensional affinity. This process does not require the intact cytoplasmic tail of CD2. Second, the degree of membrane alignment that can be achieved by topologically similar receptors deteriorates with decreasing affinity. This suggests an affinity limit for the ability of this mode of cooperativity to achieve stable cell-cell adhesion at approximately 10 mM-1.  相似文献   

2.
Antibodies to CD44 have been used to inhibit a variety of processes which include lymphohemopoiesis, lymphocyte migration, and tumor metastasis. Some, but not all, CD44-mediated functions derive from its ability to serve as a receptor for hyaluronan (HA). However, sites on CD44 that interact with either ligands or antibodies are poorly understood. Interspecies rat/mouse CD44 chimeras were used to analyze the specificity of 25 mAbs and to determine that they recognize at least seven epitopes. Amino acid substitutions that resulted in loss of antibody recognition were all located in the region of homology to other cartilage link family proteins. While at least five epitopes were eliminated by single amino acid replacements, multiple residues had to be changed to destroy binding by other antibodies. One antibody was sensitive to changes in any of three separate parts of the molecule and some antibodies to distinct epitopes cross-blocked each other. Certain antibodies had the ability to increase HA binding by lymphocytes but this did not correlate absolutely with antibody specificity and was only partially attributable to CD44 cross-linking. Antibodies that consistently blocked HA recognition were all sensitive to amino acid changes within a short stretch of CD44. Such blocking antibodies interacted with CD44 more strongly than ligand in competition experiments. One large group of antibodies blocked ligand binding, but only with a particular cell line. This detailed analysis adds to our understanding of functional domains within CD44 and requirements for antibodies to influence recognition of one ligand.  相似文献   

3.
Macrophage scavenger receptors are trimeric integral membrane proteins that bind a diverse array of negatively charged ligands. They have been shown to play a role in the pathogenesis of atherosclerosis and in host responses to microbial infections. Earlier mutational studies demonstrated that the distal segment of the collagen domain of the receptor was critically important for high affinity ligand binding activity. In this study, mutations spanning the entire collagen domain were generated and binding was assayed in transfected cells, as well as in assays employing a secreted, receptor fusion protein. Many of the distal, positively charged C-terminal residues in the type II collagen domain of the receptor, previously reported to be essential for binding at 37 degreesC, were found not to be critical for binding at 4 degreesC. Conversely, more proximally charged residues of the collagen receptor that have not been previously mutated were shown to have substantial effects on binding that were also temperature-dependent. These data suggest that scavenger receptor ligand recognition depends on more complex conformational interactions, involving charged residues throughout the entire collagen domain, than was previously recognized.  相似文献   

4.
Using the design of bivalent and bridge-binding inhibitors of thrombin as an example, we review an NMR-based experimental approach for the design of functional mimetics of protein-protein interactions. The strategy includes: (i) identification of binding residues in peptide ligands by differential resonance perturbation, (ii) determination of protein-bound structures of peptide ligands by use of transferred NOEs, (iii) minimization of larger protein and peptide ligands on the basis of NMR structural information, and (iv) linkage of two weakly binding mimetics to produce an inhibitor with enhanced affinity and specificity. This approach can be especially effective for the design of potent and selective functional mimetics of protein-protein interactions because it is less likely that the surfaces of two related proteins or enzymes share two identical binding sites or regions.  相似文献   

5.
The amino-terminal region of the low-density lipoprotein receptor (LDLR) contains seven imperfect repeats of a cysteine-rich, roughly 40-aa module (LDL-A module) that are critical for apolipoprotein binding. LDL-A modules are found in numerous cell-surface and secreted proteins and are believed to mediate extracellular protein-protein interactions. The cellular receptor for subgroup A Rous sarcoma virus (RSV) contains a single LDL-A module that binds the RSV envelope protein and allows viral infection. To define residues in an LDL-A module responsible for ligand recognition, we used a gain of function assay by using a chimeric protein in which the LDL-A module of Tva was replaced with a highly homologous module from human LDLR (LDL-A4) and determined whether this chimera or mutants produced in it could mediate RSV infection. LDL-A4 does not function as an RSV receptor; however, systematic replacement of the nonconserved residues of the LDL-A4 module in the chimeric protein with the corresponding residues from Tva identified three residues sufficient to alter ligand specificity and convert LDL-A4 to an efficient viral receptor. Mutations of the corresponding residues in the Tva LDL-A module decreased both envelope binding and viral receptor function, confirming the importance of these residues in ligand recognition by this module. Analysis of the hLDL-A5 structure demonstrates that these three residues are clustered at one end of the LDL-A module. These results demonstrate that using a single LDL-A module in a gain of function assay is a useful model to investigate ligand recognition by this module.  相似文献   

6.
A combination of intrinsic fluorescence and circular dichroic (CD) spectroscopy has been used to characterize the complexes formed between bovine retinal arrestin and heparin or phytic acid, two ligands that are known to mimic the structural changes in arrestin attending receptor binding. No changes in the CD spectra were observed upon ligand binding, nor did the degree of tryptophan fluorescence quenching change significantly in the complexes. These data argue against any large-scale changes in protein secondary or tertiary structure accompanying ligand binding. The change in tyrosine fluorescence intensity was used to determine the dissociation constants for the heparin and phytic acid complexes of arrestin. The only change observed was a saturable diminution of tyrosine fluorescence signal from the protein. For both ligands, the data suggest two distinct binding interactions with the protein--a high--affinity interaction with Kd between 200 and 300 nM, and a lower affinity interaction with Kd between 2 and 8 microM. Study of collisional quenching of tyrosine fluorescence in free arrestin and the ligand-replete complexes indicates that 10 of the 14 tyrosine residues of the protein are solvent-exposed in the free protein; this value drops to between 5 and 6 solvent-exposed residues in the high-affinity complexes of the two ligands. These data suggest that ligand binding leads to direct occlusion of between 4 and 5 tyrosine residues on the solvent-exposed surface of the protein, but not to any large-scale changes in protein structure. The large activation energy previously reported to be associated with arrestin-receptor interactions may therefore reflect localized movements of the N- and C-termini of arrestin, which are proposed to interact in the free protein through electrostatic interactions. Binding of the anionic ligands heparin, phytic acid, or phosphorylated rhodopsin may compete with the C-terminus of arrestin for these electrostatic interactions, thus allowing the C-terminus to swing out of the binding region.  相似文献   

7.
Two anionic residues in the nicotinic acetylcholine receptor, Asp-152 in the alpha-subunit and Asp-174 in the gamma-subunit or the corresponding Asp-180 in the delta-subunit, are presumed to reside near the two agonist binding sites at the alphagamma and alphadelta subunit interfaces of the receptor and have been implicated in electrostatic attraction of cationic ligands. Through site-directed mutagenesis and analysis of state changes in the receptor elicited by agonists, we have distinguished the roles of anionic residues in conferring ligand specificity and ligand-induced state changes. alphaAsp-152 affects agonist and antagonist affinity similarly, whereas gammaAsp-174 and deltaAsp-180 primarily affect agonist affinity. Combining charge neutralization on the alpha subunit with that on the gamma and delta subunits shows an additivity in free energy changes for carbamylcholine and d-tubocurarine, suggesting independent contributions of these residues to stabilizing the bound ligands. Since both aromatic and anionic residues stabilize cationic ligands, we substituted tyrosines (Y) for the aspartyl residues. While the substitution, alphaD152Y, reduced the affinities for agonists and antagonists, the gammaD174Y/deltaD180Y mutations reduced the affinity for agonist binding, but surprisingly enhanced the affinity for d-tubocurarine. To ascertain whether selective changes in agonist binding stem from the capacity of agonists to form the desensitized state of the receptor, carbamylcholine binding was measured in the presence of an allosteric inhibitor, proadifen. Mutant nAChRs carrying alphaD152Q or gammaD174N/deltaD180N show similar reductions in dissociation constants for the desensitized compared with activable receptor state and a similar proadifen concentration dependence. Hence, these mutations influence ligand recognition rather than the capacity of the receptor to desensitize. By contrast, the alphaD200Q mutation diminishes the ratio of dissociation constants for two states and requires higher proadifen concentrations to induce desensitization. Thus, the contributions of alphaAsp-152, gamma/deltaAsp-174/180, and alphaAsp-200 in stabilizing ligand binding can be distinguished by the interactions between agonists and allosteric inhibitors.  相似文献   

8.
The Abl-SH3 domain is implicated in negative regulation of the Abl kinase by mediating protein-protein interactions. High-affinity SH3 ligands could compete for these interactions and specifically activate the Abl kinase, providing control and a better understanding of the molecular interactions that underlie diseases where SH3 domains are involved. The p41 peptide (APSYSPPPPP) is a member of a group of peptide ligands designed to bind specifically the Abl-SH3 domain. It binds to Abl-SH3 with a Kd of 1.5 microM, whereas its affinity for the Fyn-SH3 domain is 273 microM. We have determined the crystal structure of the Abl-SH3 domain in complex with the high-affinity peptide ligand p41 at 1.6 A resolution. In the crystal structure, this peptide adopts a polyproline type II helix conformation through residue 5 to 10, and it binds in type I orientation to the Abl-SH3 domain. The tyrosine side-chain in position 4 of the peptide is hydrogen bonded to two residues in the RT-loop of the Abl-SH3 domain. The tight fit of this side-chain into the RT-loop pocket is enhanced by conformational adjustment of the main chain at position 5. The SH3 ligand peptides can be divided into two distinct parts. The N-terminal part binds to the SH3 domain in the region formed by the valley between the nSrc and RT-loops. It determines the specificity for different SH3 domains. The C-terminal part adopts a polyproline type II helix conformation. This binds to a well-conserved hydrophobic surface of the SH3 domain. Analysis of two "half"-peptides, corresponding to these ligand parts, shows that both are essential components for strong binding to the SH3 domains. The crystal structure of the Abl-SH3:p41 complex explains the high affinity and specificity of the p41 peptide towards the Abl-SH3 domain, and reveals principles that will be exploited for future design of small, high-affinity ligands to interfere efficiently with the in vivo regulation of Abl kinase activity.  相似文献   

9.
The biochemical properties of the molecular interactions mediating viral-cell recognition are poorly characterized. In this study, we use surface plasmon resonance to study the affinity and kinetics of the interaction of echovirus 11 with its cellular receptor decay-accelerating factor (CD55). As reported for interactions between cell-cell recognition molecules, the interaction has a low affinity (KD approximately 3.0 microM) as a result of a very fast dissociation rate constant (kon approximately 10(5) M-1.s-1, koff approximately 0.3 s-1). This contrasts with the interaction of soluble ICAM-1 (sICAM-1, CD54) with human rhinovirus 3 which has been reported to have a similar affinity but 10(2)-10(3)-fold slower kinetics (Casasnovas, J. M., and Springer, T. A. (1995) J. Biol. Chem. 270, 13216-13224). The extracellular portion of decay-accelerating factor comprises four short consensus repeat domains (domains 1-4) and a mucin-like stalk. By comparison of the binding affinity for echovirus 11 of various fragments of decay-accelerating factor, we are able to conclude that short consensus repeat domain 3 contributes approximately 80% of the binding energy.  相似文献   

10.
An antibody engineering strategy was employed to build high affinity ligands and antagonists of integrins alpha v beta 3 and alpha IIb beta 3. Previously, we inserted the integrin recognition motif, RGD, into the antigen binding site of a human antibody and selected the optimal flanking sequences from a phage-display library (Barbas, C. F., Languino, L. R., and Smith, J. W. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10003-10007). The resulting antibody, Fab-9, blocked the function of integrin alpha v beta 3 but also bound to the ligand binding site of platelet integrin alpha IIb beta 3. In this report, the antibody engineering effort has been extended by 1) redesigning Fab-9 to achieve specificity for platelet integrin alpha IIb beta 3, 2) building non-RGD-containing antibodies that bind the ligand binding site of both beta 3-integrins, and 3) testing the hypothesis that peptides derived from complementarity determining regions (CDR) can be used to emulate the activity of the parent synthetic antibody. These goals were accomplished by subjecting the original antibody, Fab-9, to a "motif optimization" (MTF). A phage library was constructed in which the residues flanking the RGD motif in Fab-9 were maintained, but the RGDX sequence was randomized. This library was panned on purified alpha IIb beta 3 to identify high affinity binders. Four function-blocking antibodies lacking RGD, but with specificity for alpha IIb beta 3, were characterized. The antibody with the highest preference for alpha IIb beta 3, MTF-10, had an adhesion sequence of KGDN. This sequence is similar in primary structure to the active sequence within the disintegrin barbourin, which also antagonizes alpha IIb beta 3 (Scarborough, R. M., Rose, J. W., Hsu, M. A., Phillips, D. R., Fried, V. A., Campbell, A. M., Nannizzi, L., and Charo, I. F. (1991) J. Biol. Chem. 266, 9359-9362). MTF-10 had a 70-fold higher affinity for alpha IIb beta 3 than alpha v beta 3. Through our selection strategy, we also identified several antibodies that lack RGD but still blocked ligand binding to both integrins with high affinity. Therefore, the RGD sequence is not necessary for a high affinity interaction with the ligand binding site of beta 3-integrins. Further investigation showed that the activity of inhibitory antibodies could be emulated by synthetic peptides derived from the protein sequences of the antibody's HCDR3. CDR-derived peptides blocked ligand binding to integrins and maintained essentially the same specificity as the parent antibody.  相似文献   

11.
Internal dynamics on the micro- to millisecond time scale have a strong influence on the affinity and specificity with which a protein binds ligands. This time scale is accessible through relaxation dispersion measurements using NMR. By studying the dynamics of a protein with different concentrations of a ligand, one can determine the dynamic effects induced by the ligand. Here we have studied slow internal dynamics of the N-terminal src homology 2 domain of phosphatidylinositide 3-kinase to probe the role of individual residues for the interaction with a tyrosine-phosphorylated binding sequence from polyoma middle T antigen. While slow dynamic motion was restricted to a few residues in the free SH2 and in the SH2 complex, motion was significantly enhanced by adding even small amounts of ligand. Kinetic rates induced by ligand binding varied between 300 and 2000 s(-1). High rates reflected direct interactions with the ligand or rearrangements caused by ligand binding. Large differences in rates were observed for residues adjacent in the primary sequence reflecting their individual roles in ligand interaction. However, rates were similar for residues involved in the same side chain interactions, reflecting concerted motions during ligand binding. For a subset of residues, exchange must involve structural intermediates which play a crucial role in high-affinity ligand binding. This analysis supports a new view of the dynamics of individual sites of a protein during ligand interaction.  相似文献   

12.
The structural basis of ligand specificity in human immunodeficiency virus (HIV) protease has been investigated by determining the crystal structures of three chimeric HIV proteases complexed with SB203386, a tripeptide analogue inhibitor. The chimeras are constructed by substituting amino acid residues in the HIV type 1 (HIV-1) protease sequence with the corresponding residues from HIV type 2 (HIV-2) in the region spanning residues 31-37 and in the active site cavity. SB203386 is a potent inhibitor of HIV-1 protease (Ki = 18 nM) but has a decreased affinity for HIV-2 protease (Ki = 1280 nM). Crystallographic analysis reveals that substitution of residues 31-37 (30's loop) with those of HIV-2 protease renders the chimera similar to HIV-2 protease in both the inhibitor binding affinity and mode of binding (two inhibitor molecules per protease dimer). However, further substitution of active site residues 47 and 82 has a compensatory effect which restores the HIV-1-like inhibitor binding mode (one inhibitor molecule in the center of the protease active site) and partially restores the affinity. Comparison of the three chimeric protease structures with those of HIV-1 and SIV proteases complexed with the same inhibitor reveals structural changes in the flap regions and the 80's loops, as well as changes in the dimensions of the active site cavity. The study provides structural evidence of the role of the 30's loop in conferring inhibitor specificity in HIV proteases.  相似文献   

13.
CD14 is a pattern recognition receptor involved in the interaction with multiple ligands, including LPS from gram-negative bacteria and lipoarabinomannan (LAM) from mycobacteria. While the interactions between LPS and soluble CD14 (sCD14) have been analyzed in detail, LAM/CD14 interactions remain uncharacterized due to the lack of suitable functional assays. We describe herein a novel bioassay for the analysis of CD14/ligand interactions. CD14-negative myeloid HL-60 cells up-regulate endogenous CD14 gene expression when stimulated with LPS in the presence of recombinant soluble CD14(1-348). Using the HL-60 bioassay, we showed that sCD14(1-348) confers responsiveness not only to LPS, but also to LAM. The response to LAM, but not that to LPS, was highly dependent on LPS binding protein (LBP). The N-terminal half of CD14 was sufficient to mediate HL-60 responses to LAM, since HL-60 cells responded with similar efficiency when stimulated with LAM and LBP in the presence of sCD14(1-348) or sCD14(1-152). Thus, the N-terminal 152 amino acids of CD14 contain the site(s) involved in the interaction with LAM and LBP, as well as the residues required for LAM-dependent CD14 signaling.  相似文献   

14.
Spectroscopic studies of antibody-antigen interactions can provide useful information about the interactive motifs and energetics involved in the intermolecular association process. In this study we used absorption spectroscopy to examine the interactions between five different monoclonal antibodies (mAb) and four superpotent ligand sweeteners. Quantitative changes in the absorption spectra in the wavelength range of 230-800 nm were utilized for the determination of intrinsic association constants and thermodynamic parameters of the mAb-ligand complexes. The intrinsic association constants for the mAb-ligand complexes were found to be in the range of 10(7)-10(5) lM-1 and were in agreement with previous radioimmunoassay determinations. For two mAb, qualitative changes in the spectra in the 340 nm range could be identified and were related to the presence of charge-transfer interaction between the guanidinium ligand and aromatic residues in the binding site of the mAb. A charge transfer spectra was observed in mAb NC10.8 with two different sweetener ligands. The thermodynamic parameters of the ligand-mAb interactions were analyzed by van't Hoff plots and in almost all cases the reactions were found to be enthalpically driven. The determinations of intrinsic affinity and thermodynamic parameters may be useful in computer-aided molecular modelling studies of the antibody binding pocket and predicted ligand docking orientations. Antibody NC6.8 was found to react with this set of sweetener ligands in a rank order that is related to their sweetness potencies and the spectroscopic findings for NC6.8 are in agreement with the X-ray diffraction data of the Fab-ligand crystal structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Although interactions of proteins with glycosaminoglycans (GAGs), such as heparin and heparan sulphate, are of great biological importance, structural requirements for protein-GAG binding have not been well-characterised. Ionic interactions are important in promoting protein-GAG binding. Polyelectrolyte theory suggests that much of the free energy of binding comes from entropically favourable release of cations from GAG chains. Despite their identical charges, arginine residues bind more tightly to GAGs than lysine residues. The spacing of these residues may determine protein-GAG affinity and specificity. Consensus sequences such as XBBBXXBX, XBBXBX and a critical 20 A spacing of basic residues are found in some protein sites that bind GAG. A new consensus sequence TXXBXXTBXXXTBB is described, where turns bring basic interacting amino acid residues into proximity. Clearly, protein-GAG interactions play a prominent role in cell-cell interaction and cell growth. Pathogens including virus particles might target GAG-binding sites in envelope proteins leading to infection.  相似文献   

16.
In the present study we examine the role of transmembrane aromatic residues of the delta-opioid receptor in ligand recognition. Three-dimensional computer modeling of the receptor allowed to identify an aromatic pocket within the helices bundle which spans transmembrane domains (Tms) III to VII and consists of tyrosine, phenylalanine, and tryptophan residues. Their contribution to opioid binding was assessed by single amino acid replacement: Y129F and Y129A (Tm III), W173A (Tm IV), F218A and F222A (Tm V), W274A (Tm VI), and Y308F (Tm VII). Scatchard analysis shows that mutant receptors, transfected into COS cells, are expressed at levels comparable with that of the wild-type receptor. Binding properties of a set of representative opioids were examined. Mutations at position 129 most dramatically affected the binding of all tested ligands (up to 430-fold decrease of deltorphin II binding at Y129A), with distinct implication of the hydroxyl group and the aromatic ring, depending on the ligand under study. Affinity of most ligands was also reduced at Y308F mutant (up to 10-fold). Tryptophan residues seemed implicated in the recognition of specific ligand classes, with reduced binding for endogenous peptides at W173A mutant (up to 40-fold) and for nonselective alkaloids at W274A mutant (up to 65-fold). Phenylalanine residues in Tm V appeared poorly involved in opioid binding as compared with other aromatic amino acids examined. Generally, the binding of highly selective delta ligands (TIPPpsi, naltrindole, and BW373U86) was weakly modified by these mutations. Noticeably, TIPPpsi binding was enhanced at W274A receptor by 5-fold. Conclusions from our study are: (i) aromatic amino acid residues identified by the model contribute to ligand recognition, with a preponderant role of Y129; (ii) these residues, which are conserved across opioid receptor subtypes, may be part of a general opioid binding domain; (iii) each ligand-receptor interaction is unique, as demonstrated by the specific binding pattern observed for each tested opioid compound.  相似文献   

17.
The knowledge about molecular factors driving simple ligand-DNA interactions is still limited. The aim of the present study was to investigate the electrostatic and non-electrostatic contributions to the binding free energies of anthracycline compounds with DNA. Theoretical calculations based on continuum methods (Poisson-Boltzmann and solvent accessible surface area) were performed to estimate the binding free energies of five selected anthracycline ligands (daunomycin, adriamycin, 9-deoxyadriamycin, hydroxyrubicin, and adriamycinone) to DNA. The free energy calculations also took into account the conformational change that DNA undergoes upon ligand binding. This conformational change appeared to be very important for estimating absolute free energies of binding. Our studies revealed that the absolute values of all computed contributions to the binding free energy were quite large compared to the total free energy of binding. However, the sum of these large positive and negative values produced a small negative value of the free energy around -10 kcal/mol. This value is in good agreement with experimental data. Experimental values for relative binding free energies were also reproduced for charged ligands by our calculations. Together, it was found that the driving force for ligand-DNA complex formation is the non-polar interaction between the ligand and DNA even if the ligand is positively charged.  相似文献   

18.
The variable domain resurfacing and CDR-grafting approaches to antibody humanization were compared directly on the two murine monoclonal antibodies N901 (anti-CD56) and anti-B4 (anti-CD19). Resurfacing replaces the set of surface residues of a rodent variable region with a human set of surface residues. The method of CDR-grafting conceptually consists of transferring the CDRs from a rodent antibody onto the Fv framework of a human antibody. Computer-aided molecular modeling was used to design the initial CDR-grafted and resurfaced versions of these two antibodies. The initial versions of resurfaced N901 and resurfaced anti-B4 maintained the full binding affinity of the original murine parent antibodies and further refinements to these versions described herein generated five new resurfaced antibodies that contain fewer murine residues at surface positions, four of which also have the full parental binding affinity. A mutational study of three surface positions within 5 A of the CDRs of resurfaced anti-B4 revealed a remarkable ability of the resurfaced antibodies to maintain binding affinity despite dramatic changes of charges near their antigen recognition surfaces, suggesting that the resurfacing approach can be used with a high degree of confidence to design humanized antibodies that maintain the full parental binding affinity. By comparison CDR-grafted anti-B4 antibodies with parental affinity were produced only after seventeen versions were attempted using two different strategies for selecting the human acceptor frameworks. For both the CDR-grafted anti-B4 and N901 antibodies, full restoration of antigen binding affinity was achieved when the most identical human acceptor frameworks were selected. The CDR-grafted anti-B4 antibodies that maintained high affinity binding for CD19 had more murine residues at surface positions than any of the three versions of the resurfaced anti-B4 antibody. This observation suggests that the resurfacing approach can be used to produce humanized antibodies with reduced antigenic potential relative to their corresponding CDR-grafted versions.  相似文献   

19.
A 58-mer L-RNA ligand that binds to naturally occurring D-adenosine with a dissociation constant of 1.7 microM in solution was identified from a combinatorial library employing mirror-design. The corresponding D-RNA ligand shows identical binding affinity to L-adenosine. Reciprocal chiral specificity was also evident from ligand discrimination; the binding affinity of the L-RNA ligand for D-adenosine was 9000-fold greater than its affinity for L-adenosine and vice versa. While the D-RNA ligand was rapidly degraded in human serum, the L-RNA ligand displayed an extraordinary stability. This indicates the potential application of specifically designed L-RNA ligands as stable monoclonal antibody analogues and the development of highly stable L-ribozymes.  相似文献   

20.
This paper reports the synthesis and screening of a combinatorial peptide library for new affinity ligands for glycosylated haemoglobin (HbA1c), which is an important indicator of diabetes control. The new ligands are suitable for large-scale synthesis and overcome the disadvantages of antibodies (unstable and expensive to produce etc.), while remaining as efficient as antibodies in binding to the analyte. The library consisted of 262,144 hexapeptides synthesised using the one-bead-one-compound technique. The hexapeptides attached onto beads were screened with glycosylated haemoglobin HbA1c. The structures of the peptides exhibiting high affinity were characterised by Edman microsequencing. Computer modelling simulation of one of the lead sequences has shown that this class of ligand has a high affinity and specificity for glycosylated haemoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号